Skip to main content

Numerical Evaluation of Integrals and Derivatives

  • Chapter
  • First Online:
Spectral Methods in Chemistry and Physics

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

The numerical evaluation of integrals referred to as a quadrature is an important aspect of a large number of applied problems in science and engineering. In Chap. 2, we derived several different methods for the numerical evaluation of integrals. These include the trapezoidal and Simpson’s rules, the higher order Newton-Cotes algorithms, the Clenshaw-Curtis scheme and the Gauss quadrature methods based on classical and nonclassical polynomials. In this chapter, general principles for the accurate and efficient numerical evaluation of integrals that occur in the modeling of physical systems are provided. This is the basis for an efficient numerical method of solution of integral equations discussed in Chap. 5. The physical systems considered vary considerably from section to section and a brief introduction is provided in each case with numerous references to textbooks and current research publications. We consider radial integrals that occur in density functional theory, integrals for chemical and nuclear fusion rate coefficients and also for the solution of the Boltzmann equation. The numerical evaluation of matrix elements in kinetic theory and quantum mechanics is also presented with important implications for pseudospectral methods. The latter section of the chapter is devoted to the pseudospectral method for numerical differentiation based on the Lagrange and Sinc interpolants. The numerical solution of Sturm-Liouville differential eigenvalue problems for the classical polynomials is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Niels Henrik David Bohr (1885–1962) was a Danish physicist who made fundamental contributions to quantum theory and in particular to the Bohr model of the hydrogen atom. He received the Nobel Prize in Physics in 1922.

  2. 2.

    Eugene Paul Wigner (1902–1995), was an Hungarian American theoretical physicist and mathematician who was awarded the Nobel Prize in Physics in 1963 for his fundamental work on the quantum mechanics of elementary particles and symmetries.

  3. 3.

    Jesse Ernest Wilkins, Jr. (1923–2011) was an African American nuclear physicist and mathematician who contributed to the Manhattan project and nuclear fission reactions.

  4. 4.

    James Clerk Maxwell (1831–1879) was a Scottish mathematical physicist who made a large number of fundamental contributions to electromagnetic theory, kinetic theory and thermodynamics.

  5. 5.

    Max Born (1882–1970) was a German-British physicist and mathematician who made significant contributions to quantum mechanics, solid-state physics and optics, and won the 1954 Nobel Prize in Physics for the statistical interpretation of wavefunctions.

  6. 6.

    Julius Robert Oppenheimer (1904–1967) was an American theoretical physicist and played a prominent role in the Manhattan Project for which he became known as the “father of the atomic bomb”.

  7. 7.

    John Clarke Slater (1900–1976) was an American physicist who pioneered theoretical methods in atomic and molecular electronic structure.

  8. 8.

    Louis Napoleon George Filon (1875–1937) was an English mathematician and worked in classical mechanics, elasticity and continuous media.

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office (1964)

    Google Scholar 

  • Alterman, Z., Frankowski, K., Pekeris, C.L.: Eigenvalues and eigenfunctions of the linearized Boltzmann collision operator for a Maxwell gas and for a gas of rigid spheres. Astophys. J. Suppl. 7, 291–331 (1962)

    ADS  Google Scholar 

  • Amore, P.: A variational Sinc collocation method for strong-coupling problems. J. Phys. A: Math. Gen. 39, L349–L355 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  • Andersen, K., Shuler, K.E.: On the relaxation of a hard sphere Rayleigh and Lorentz gas. J. Chem. Phys. 40, 633–650 (1964)

    ADS  MathSciNet  Google Scholar 

  • Angula, C., et al.: A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999)

    ADS  Google Scholar 

  • Asheim, A., Deano, A., Huybrechs, D., Wang, H.: A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discret. Contin. Dyn. Syst. 34, 883–901 (2014)

    MATH  MathSciNet  Google Scholar 

  • Atenzi, S., Meyer-Ter-Vehn, J.: The Physics of Inertial Fusion. Clarendon Press, Oxford (2004)

    Google Scholar 

  • Bacic, Z., Light, J.C.: Highly excited vibrational levels of floppy triatomic-molecules: a discrete variable representation—distributed Gaussian-basis approach. J. Chem. Phys. 85, 4594–4604 (1986)

    Google Scholar 

  • Balakrishnan, N., Dalgarno, A.: Nitric oxide production in collisions of hot O(\(^3\)P) atoms with N\(_2\). J. Geophys. Res. 108, 1065 (2003)

    Google Scholar 

  • Baltensperger, R., Trummer, M.A.: Spectral differencing with a twist. SIAM J. Sci. Comput. 24, 1465–1487 (2003)

    MATH  MathSciNet  Google Scholar 

  • Barkley, D.: Spiral meandering. In: Kapral, R., Showalter, K. (eds.) Chemical Waves and Patterns, pp. 163–189. Kluwer Academic, Norwell (1995)

    Google Scholar 

  • Bartlett, D.F., Corle, T.R.: The circular parallel plate capacitor: a numerical solution for the potential. J. Phys. A: Math. Gen. 18, 1337–1342 (1985)

    ADS  Google Scholar 

  • Baye, D.: Lagrange bases for the Fourier, generalized Fourier and Riccati-Bessel grids. J. Phys. B: Atom. Mol. Opt. Phys. 27, L187–L191 (1994)

    ADS  Google Scholar 

  • Baye, D.: Lagrange-mesh method for quantum-mechanical problems. Phys. Stat. Sol. B 243, 1095–1109 (2006)

    ADS  Google Scholar 

  • Baye, D., Heenen, P.H.: Generalized meshes for quantum-mechanical problems. J. Phys. A: Math. Gen. 19, 2041–2059 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  • Baye, D., Vincke, V.: Lagrange meshes from nonclassical orthogonal polynomials. Phys. Rev. E 59, 7195–7199 (1999)

    ADS  Google Scholar 

  • Baye, D., Hesse, M., Vincke, M.: The unexplained accuracy of the Lagrange-mesh method. Phys. Rev. E 65, 026701 (2002)

    ADS  MathSciNet  Google Scholar 

  • Becke, A.D.: A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547–2553 (1988)

    ADS  Google Scholar 

  • Becke, A.D.: Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014)

    Google Scholar 

  • Belai, O.Y., Schwartz, O.V., Shapiro, D.A.: Accuracy of one-dimensional collision integral in the rigid-sphere approximation. Phys. Rev. A 76, 012513 (2007)

    ADS  Google Scholar 

  • Bellman, R.E., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    ADS  MATH  MathSciNet  Google Scholar 

  • Berman, P.R., Haverkort, J.E.M., Woerdman, J.P.: Collision kernels and transport coefficients. Phys. Rev. A 34, 4647–4656 (1986)

    Google Scholar 

  • Bernstein, R.B.: Quantum effects in elastic molecular scattering. Adv. Chem. Phys. 10, 75–134 (1966)

    Google Scholar 

  • Bertulani, C.A., Fuqua, J., Hussein, M.S.: Big bang nucleosynthesis and non-Maxwellian distribution. Astrophys. J. 767(63), 1–11 (2013)

    Google Scholar 

  • Blackmore, R., Shizgal, B.: Discrete ordinate method of solution of Fokker-Planck equations with nonlinear coefficients. Phys. Rev. A 31, 1855–1868 (1985)

    ADS  Google Scholar 

  • Bobylev, A.V.: Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas. Theor. Math. Phys. 60, 820–841 (1984)

    MATH  MathSciNet  Google Scholar 

  • Bordoni, A., Manini, N.: An optimized algebraic basis for molecular potentials. J. Phys. Chem. A 111, 12564–12569 (2007)

    Google Scholar 

  • Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing. SIAM, Philadelphia (2004)

    Google Scholar 

  • Bosch, H.S., Hale, G.M.: Improved formulas for fusion cross sections and thermal reactivities. Nucl. Fusion 32, 611–631 (1992)

    ADS  Google Scholar 

  • Bovino, S., Zhang, P., Kharchenko, V., Dalgarno, A.: Trapping hydrogen atoms from a Neon-gas matrix: a theoretical simulation. J. Chem. Phys. 131, 054302 (2009)

    ADS  Google Scholar 

  • Bovino, S., Zhang, P., Kharchenko, V., Dalgarno, A.: Relaxation of energetic S(\(^1\)D) atoms in Xe gas: comparison of ab initio calculations with experimental data. J. Chem. Phys. 135, 024304 (2011)

    ADS  Google Scholar 

  • Boyd, J.P.: The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comput. Phys. 45, 43–79 (1982)

    ADS  MATH  MathSciNet  Google Scholar 

  • Boyd, J.P.: Exponentially convergent Fourier-Chebyshev quadrature schemes on bounded and infinite domains. J. Sci. Comput. 2, 99–109 (1987)

    Google Scholar 

  • Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  • Brun, R.: Introduction to Reactive Gas Dynamics. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  • Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, Boston (2011)

    Google Scholar 

  • Burke, P.G.: R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes. Springer, New York (2011)

    Google Scholar 

  • Burke, K.: Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012)

    ADS  Google Scholar 

  • Burke, P.G., Joachain, C.J.: Theory of Electron Atom Collisions Part 1: Potential Scattering. Springer, New York (1995)

    Google Scholar 

  • Canto, L.F., Hussein, M.S.: Scattering Theory of Molecules, Atoms and Nuclei. Springer, New York (2013)

    MATH  Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Google Scholar 

  • Cassar, M.M., Drake, G.W.F.: High precision variational calculations for H\(_2^+\). J. Phys. B: At. Mol. Opt. Phys. 37, 2485–2492 (2004)

    ADS  Google Scholar 

  • Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)

    Google Scholar 

  • Chang, J.S., Cooper, G.: A practical difference scheme for Fokker-Planck equations. J. Comput. Phys. 6, 1–16 (1970)

    Google Scholar 

  • Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  • Chatfield, D.C., Truhlar, D.G., Schwenke, D.W.: Benchmark calculations for thermal reaction rates. I. Quantal scattering theory. J. Chem. Phys. 94, 2040–2044 (1991)

    ADS  Google Scholar 

  • Cheney, W., Kincaid, D.: Numerical Methods and Computing, 6th edn. Brooks/Cole Publishing Company, Calif (2008)

    Google Scholar 

  • Child, M.S.: Molecular Collision Theory. Dover, New York (1996)

    Google Scholar 

  • Clayton, D.D.: Principles of Stellar Evolution and Nucleosynthesis. McGraw-Hill, New York (1968)

    Google Scholar 

  • Cohen, J.S.: Rapid accurate calculation of JWKB phase-shifts. J. Chem. Phys. 68, 1841–1843 (1978)

    ADS  Google Scholar 

  • Colbert, D.T., Miller, W.H.: A novel discrete variable representation for quantum-mechanical reactive scattering via the S-Matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992)

    ADS  Google Scholar 

  • Cools, R.: An encyclopaedia of cubature formulas. J. Complexity 19, 445–453 (2003)

    MATH  MathSciNet  Google Scholar 

  • Danailov, D.M., Viehland, L.A., Johnson, R., Wright, T.G., Dickinson, A.S.: Transport of O\({^+}\) through Argon gas. J. Chem. Phys. 128, 134302 (2008)

    ADS  Google Scholar 

  • Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Descouvemont, P., Adahchour, A., Angulo, C., Coc, A., Vangioni-Flam, E.: Compilation and R-matrix analysis of Big Bang nuclear reaction rates. At. Data Nucl. Data Tables 88, 203–236 (2004)

    ADS  Google Scholar 

  • Dickinson, A.S., Certain, P.R.: Calculation of matrix elements for one-dimensional quantum-mechanical problems. J. Chem. Phys. 49, 4209–4211 (1968)

    ADS  MathSciNet  Google Scholar 

  • Dickinson, A.S., Shizgal, B.: Comparison of classical and quantum continuum expectation values. Mol. Phys. 30, 1221–1228 (1975)

    ADS  Google Scholar 

  • Drake, G.W.F.: High precision theory of atomic Helium. Phys. Scr. T83, 82–92 (1999)

    ADS  Google Scholar 

  • Drake, G.W.F., Cassar, M.M., Nistor, R.A.: Ground-state energies for helium, H\(^-\) and Ps\(^-\). Phys. Rev. A 65, 054501 (2002)

    ADS  Google Scholar 

  • Dulieu, O., Kosloff, R., Masnou-Seeuws, F., Pichler, G.: Quasibound states in long-range alkali dimers: grid method calculation. J. Chem. Phys. 107, 10633–10642 (1997)

    Google Scholar 

  • Durran, D.R.: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Springer, Berlin (2010)

    Google Scholar 

  • El-Sherbiny, A., Poirier, R.A.: An evaluation of the radial part of the numerical integration commonly used in DFT. J. Comput. Chem. 25, 1378–1384 (2004)

    MATH  Google Scholar 

  • Ernst, M.H.: Nonlinear model Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)

    ADS  MathSciNet  Google Scholar 

  • Fermi, E.: Un metodo statistico per la determinazione di alcune priopriet dell’atomo. Rend. Accad. Naz. Lincei 6, 602607 (1927)

    Google Scholar 

  • Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  • Finlayson, B.A.: The Method of Weighted Residuals and Variational Principles. Academic Press, New York (1972)

    MATH  Google Scholar 

  • Finlayson, B.A., Scriven, L.E.: The method of weighted residuals—a review. Appl. Mech. Rev. 19, 735–748 (1966)

    Google Scholar 

  • Fiolhais, C., Marques, M.A.L., Nogueira, F.: A Primer in Density Functional Theory. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Foch, J.D., Ford, G.W.: The linear Boltzmann equation. In: de Boer, J., Uhlenbeck, G.E. (eds.) Studies in Statistical Mechanics, pp. 127–154. Elsevier, Holland (1970)

    Google Scholar 

  • Ford, G.W.: Matrix elements of the linearized collision operator. Phys. Fluids 11, 515–521 (1968)

    ADS  MATH  Google Scholar 

  • Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43, 473–490 (2002)

    Google Scholar 

  • Frankowski, K., Pekeris, C.L.: Logarithmic terms in the wave functions of two-electron atoms. Phys. Rev. 146, 46–49 (1966)

    ADS  Google Scholar 

  • Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  • Gallas, J.A.C.: Some matrix elements for Morse oscillator. Phys. Rev. A 21, 1829–1834 (1980)

    ADS  Google Scholar 

  • Gautschi, W.: The numerical evaluation of a challenging integral. Numer. Algorithms 49, 187–194 (2008)

    Google Scholar 

  • Gibble, K.E., Gallagher, A.: Measurements of velocity-changing collision kernels. Phys. Rev. A 43, 1366–1380 (1991)

    Google Scholar 

  • Gibelli, L., Shizgal, B.D., Yau, A.W.: Ion energization by wave-particle interactions: comparison of spectral and particle simulation solutions of the Vlasov equation. J. Comput. Phys. 59, 2566–2581 (2010)

    MATH  MathSciNet  Google Scholar 

  • Gill, P.M.W.: Molecular integrals over Gaussian basis functions. Adv. Quant. Chem. 25, 141–205 (1994)

    Google Scholar 

  • Gill, P.M.W., Chien, S.-H.: Radial quadrature for multiexponential integrands. J. Comput. Chem. 24, 732–740 (2003)

    Google Scholar 

  • Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison Wesley, San Francisco (2000)

    Google Scholar 

  • Gombosi, T.I.: Gaskinetic Theory. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  • Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    MATH  Google Scholar 

  • Grabowski, P.E., Chernoff, D.F.: Pseudospectral calculation of helium wave functions, expectation values, and oscillator strength. Phys. Rev. A 84, 042505 (2011)

    ADS  Google Scholar 

  • Hamilton, I.P., Light, J.C.: On distributed Gaussian bases for simple model multidimensional vibrational problems. J. Chem. Phys. 84, 306–317 (1986)

    ADS  Google Scholar 

  • Harris, D.O., Engerholm, G.G., Gwinn, W.D.: Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators. J. Chem. Phys. 43, 1515–1517 (1965)

    ADS  Google Scholar 

  • Haubold, H.J., John, R.W.: Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399–411 (1981)

    ADS  Google Scholar 

  • Haxton, D.J.: Lebedev discrete variable representation. J. Phys. B: At. Mol. Opt. Phys. 40, 4443–4451 (2007)

    ADS  Google Scholar 

  • Heidbrink, W.W., Sadler, G.J.: The behaviour of fast ions in Tokamak experiments. Nucl. Fusion 34, 535–615 (1994)

    ADS  Google Scholar 

  • Helgaker, T., Jorgensen, P., Olsen, J.: Molecular Electronic Structure Theory. Wiley, New York (2000)

    Google Scholar 

  • Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Hirschfelder, J.O., Curtiss, C.F., Bird, B.: The Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    MATH  Google Scholar 

  • Hoare, M.R.: The linear gas. Adv. Chem. Phys. 20, 135–214 (1971)

    Google Scholar 

  • Hoare, M.R., Kaplinsky, C.H.: Linear hard sphere gas: variational eigenvalue spectrum of the energy kernel. J. Chem. Phys. 52, 3336–3353 (1970)

    Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    ADS  MathSciNet  Google Scholar 

  • Holloway, J.P.: Spectral discretizations of the Vlasov-Maxwell equations. Trans. Theory Stat. Phys. 25, 1–32 (1996)

    ADS  MathSciNet  Google Scholar 

  • Holway, L.H.: Time varying weight functions and the convergence of polynomial expansions. Phys. Fluids 10, 35–48 (1967)

    ADS  Google Scholar 

  • Huang, K.: Statistical Mechanics. Wiley, New York (1967)

    Google Scholar 

  • Hubert, D.: Auroral ion velocity distribution function: generalized polynomial solution of Boltzmann’s equation. Planet. Space Sci. 31, 119–127 (1983)

    ADS  Google Scholar 

  • Hussein, M.S., Pato, M.P.: Uniform expansion of the thermonuclear reaction rate formula. Braz. J. Phys. 27, 364–372 (1997)

    ADS  Google Scholar 

  • Isaacson, S.A., Kirby, R.M.: Numerical solution of linear Volterra integral equations of the second kind with sharp gradients. J. Comput. Appl. Math. 235, 4283–4301 (2011)

    MATH  MathSciNet  Google Scholar 

  • Iserles, A., Norsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  • Jamieson, M.J., Dalgarno, A., Wei, L.: Elastic scattering of hydrogen and deuterium atoms by oxygen atoms. J. Geophys. Res. 111, A06308 (2006)

    ADS  Google Scholar 

  • Jerri, A.J.: Introduction to Integral Equations with Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  • Johnson, R.E., Liu, M., Tully, C.: Collisional dissociation cross sections for O \(+\) O\(_2\), CO \(+\) N\(_2\), O\(_2\) \(+\) O\(_2\), N \(+\) N\(_2\) and N\(_2\) \(+\) N\(_2\). Planet. Space Sci. 50, 123–128 (2002)

    ADS  MATH  Google Scholar 

  • Jones, R.O., Gunnarsson, O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989)

    ADS  Google Scholar 

  • Kabin, K., Shizgal, B.D.: Exact evaluation of collision integrals for the nonlinear Boltzmann equation. AIP Conf. Proc. 663, 35–42 (2003)

    ADS  Google Scholar 

  • Kakhiani, K., Tsereteli, K., Tsereteli, P.: A program to generate a basis set adaptive radial quadrature grid for density functional theory. Comput. Phys. Commun. 180, 256–268 (2009)

    ADS  MATH  MathSciNet  Google Scholar 

  • Kallush, S., Kosloff, R.: Improved methods for mapped grids: applied to highly excited vibrational states of diatomic molecules. Chem. Phys. Lett. 433, 221–227 (2006)

    ADS  Google Scholar 

  • Kapral, R., Ross, J.: Relaxation in a dilute binary gas mixture. J. Chem. Phys. 52, 1238–1243 (1970)

    ADS  Google Scholar 

  • Karplus, M., Porter, R.N.: Atoms and Molecules: An Introduction for Students of Physical Chemistry. Benjamin, Menlo Park (1970)

    Google Scholar 

  • Kennedy, M., Smith, F.J.: The efficient computation of JWKB phase shifts. Mol. Phys. 13, 443–448 (1967)

    ADS  Google Scholar 

  • Kern, C.W., Karplus, M.: Gaussian-transform method for molecular integrals. II. Evaluation of molecular properties. J. Chem. Phys. 43, 415–429 (1965)

    ADS  MathSciNet  Google Scholar 

  • Kharchenko, V., Dalgarno, A.: Thermalization of fast O(\(^1\)D) atoms in the stratosphere and mesosphere. J. Geophys. Res. 109, D18311 (2004)

    ADS  Google Scholar 

  • Kharchenko, V., Tharamel, J., Dalgarno, A.: Kinetics of thermalization of fast nitrogen atoms beyond the hard sphere approximation. J. Atmos. Sol. Terr. Phys. 59, 107–115 (1997)

    ADS  Google Scholar 

  • Kharchenko, V., Balakrishnan, N., Dalgarno, A.: Thermalization of fast nitrogen atoms in elastic and inelastic collisions with molecules of atmospheric gases. J. Atmos. Terr. Phys. 60, 95–106 (1998)

    ADS  Google Scholar 

  • Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    ADS  MathSciNet  Google Scholar 

  • Kokoouline, V., Dulieu, O., Kosloff, R., Masnou-Seeuws, F.: Mapped Fourier methods for long-range molecules: application to perturbations in the Rb\(_2\)(0\(^+_u\)) photoassociation spectrum. J. Chem. Phys. 110, 9865–9876 (1999)

    ADS  Google Scholar 

  • Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, New York (2010)

    Google Scholar 

  • Krook, M., Wu, T.T.: Formation of Maxwellian tails. Phys. Rev. Lett. 36, 1107–1109 (1976)

    ADS  Google Scholar 

  • Kumar, A.S.: An analytical solution to applied mathematics-related Loves equation using the Boubaker polynomials expansion scheme. J. Frankl. Inst. 347, 1755–1761 (2010)

    MATH  Google Scholar 

  • Kythe, P.K., Puri, P.: Computational Methods for Linear Integral Equations. Birkhauser, Berlin (2002)

    MATH  Google Scholar 

  • Kythe, P.K., Schaferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman and Hall/CRC, London (2004)

    Google Scholar 

  • Langer, R.E.: On the connection formulas and the solutions of the wave equation. Phys. Rev. 51, 669–676 (1937)

    ADS  Google Scholar 

  • Lebedev, V.I.: Spherical quadrature formulas exact to orders 25–29. Sib. Mat. Zh. 18, 132–142 (1977)

    MATH  Google Scholar 

  • Lemmon, E.W., Jacobsen, R.T.: Viscosity and thermal conductivity equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys. 25, 21–69 (2004)

    ADS  Google Scholar 

  • LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  • Levine, I.N.: Quantum Chemistry, 6th edn. Prentice Hall, New Jersey (2009)

    Google Scholar 

  • Liao, P.F., Bjorholm, J.E., Berman, P.R.: Effects of velocity-changing collisions on two-photon and stepwise-absorption spectroscopic line shapes. Phys. Rev. A 21, 1927–1938 (1980)

    ADS  Google Scholar 

  • Liboff, R.L.: Introductory Quantum Mechanics, 4th edn. Addison-Wesley, New York (2002)

    Google Scholar 

  • Liboff, R.L.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, 3rd edn. Springer, New York (2003)

    Google Scholar 

  • Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    ADS  MathSciNet  Google Scholar 

  • Light, J.C., Carrington Jr, T.: Discrete variable representations and their utilization. Adv. Chem. Phys. 114, 263–310 (2000)

    Google Scholar 

  • Light, J.C., Hamilton, I.P., Lill, J.V.: Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 82, 1400–1409 (1985)

    ADS  Google Scholar 

  • Lindenfeld, M.J., Shizgal, B.: Matrix elements of the Boltzmann collision operator for gas mixtures. Chem. Phys. 41, 81–95 (1979)

    ADS  Google Scholar 

  • Lindfield, G.R., Penny, J.E.T.: Numerical Methods Using MATLAB. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  • Lindh, R., Malmqvist, P.A., Gagliardi, L.: Molecular integrals by numerical quadrature I. Radial integration. Theor. Chem. Acta 106, 178–187 (2001)

    Google Scholar 

  • Liou, K.-N.: A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: applications to cloudy and hazy atmospheres. J. Atmos. Sci. 30, 1303–1326 (1973)

    ADS  Google Scholar 

  • Liu, Q.-J., Zhao, W.-Q.: Iterative solution for groundstate of H\(_2^+\) ion. Commun. Theor. Phys (Beijing, China). 53, 57–62 (2010)

    Google Scholar 

  • Lo, J.Q.-W., Shizgal, B.D.: Spectral convergence of the quadrature discretization method in the solution of the Schrödinger and Fokker-Planck equations: comparison with Sinc methods. J. Chem. Phys. 125, 194108 (2006)

    ADS  Google Scholar 

  • Lo, J.Q.-W., Shizgal, B.D.: An efficient mapped pseudospectral method for weakly bound states: vibrational states of He\(_2\), Ne\(_2\), Ar\(_2\) and Cs\(_2\). J. Phys. B: At. Mol. Opt. Phys. 41, 185103 (2008)

    ADS  Google Scholar 

  • Love, E.R.: The electrostatic field of two equal circular co-axial conducting disks. Q. J. Mech. Appl. Math. 2, 428–451 (1949)

    MATH  MathSciNet  Google Scholar 

  • Loyalka, S.K., Tipton, E.L., Tompson, R.V.: Chapman-Enskog solutions to arbitrary order in Sonine polynomials I: simple, rigid-sphere gas. Physica A 379, 417–435 (2007)

    Google Scholar 

  • Lyness, J.N.: When not to use an automatic quadrature routine. SIAM Rev. 25, 63–87 (1983)

    MATH  MathSciNet  Google Scholar 

  • Lyness, J.N.: Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12, 109–117 (1985)

    MathSciNet  Google Scholar 

  • Mason, E.A., McDaniel, E.W.: Transport Properties of Ions in Gases. Wiley, New York (1988)

    Google Scholar 

  • Mathai, A.M., Haubold, H.J.: Review of mathematical techniques applicable in astrophysical reaction rate theory. Astrophys. Space Sci. 282, 265–280 (2002)

    ADS  Google Scholar 

  • McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E.E., Kuščer, I.: Nonequilibrium Phenomena in Polyatomic Gases Volume. 2: Cross Sections, Scattering, and Rarefied Gases. Oxford University Press, Oxford (1991)

    Google Scholar 

  • McDaniel, E.W., Mason, E.A.: The Mobility and Diffusion of Ions in Gases. Wiley, New York (1973)

    Google Scholar 

  • McGuyer, B.H., Marslann III, R., Olsen, B.A., Happer, W.: Cusp kernels for velocity-changing collisions. Phys. Rev. Lett. 108, 183202 (2012)

    Google Scholar 

  • McQuarrie, D.A., Simon, J.D.: Physical Chemistry: A Molecular Approach. University Science Books, California (1997)

    MATH  Google Scholar 

  • Meijering, E.H.W., Niessen, W.J., Viergever, M.A.: The Sinc-approximating kernels of classical polynomial interpolation. IEEE Int. Conf. Image Proc. 3, 652–656 (1999)

    Google Scholar 

  • Mitani, M.: An application of double exponential formula to radial quadrature grid in density functional calculation. Theor. Chem. Acc. 130, 645–669 (2011)

    Google Scholar 

  • Morgan, J.D.: Thomas-Fermi and other density—functional theories. In: Drake, G.W.F. (ed.) Atomic, Molecular and Optical Physics Handbook, pp. 233–242. AIP Press, New York (1996)

    Google Scholar 

  • Mullen, W.J., Laloë, F., Richards, M.G.: Longitudinal relaxation times for dilute quantum gases. J. Low Temp. Phys. 80, 1–13 (1990)

    Google Scholar 

  • Munn, R.J., Mason, E.A., Smith, F.J.: Some aspects of the quantal and semiclassical calculation of phase shifts and cross sections for molecular scattering and transport. J. Chem. Phys. 41, 3978–3988 (1964)

    Google Scholar 

  • Mura, M.E., Knowles, P.J.: Improved radial grids for quadrature in molecular density-functional calculations. J. Chem. Phys. 104, 9848–9858 (1996)

    ADS  Google Scholar 

  • Murray, C.W., Handy, N.C., Lamming, G.L.: Quadrature schemes for integrals of density functional theory. Mol. Phys. 78, 997–1014 (1993)

    ADS  Google Scholar 

  • Nan, G., Houston, P.L.: Velocity relaxation of S(\(^1\)D) by rare gases measured by Doppler spectroscopy. J. Chem. Phys. 97, 7865–7872 (1992)

    ADS  Google Scholar 

  • Napier, D.G., Shizgal, B.D.: Sound dispersion in single-component systems. Phys. A 387, 4099–4118 (2008)

    Google Scholar 

  • Newbury, N.R., Barton, A.S., Cates, G.D., Happer, W., Middleton, H.: Gaseous \(^3\)He-\(^3\)He magnetic dipolar relaxation. Phys. Rev. A 48, 4411–4420 (1993)

    ADS  MATH  Google Scholar 

  • O’Hara, H., Smith, F.J.: Error estimation in the Clenshaw-Curtis quadrature formula. Comput. J. 11, 213–219 (1968)

    Google Scholar 

  • Oh, S.-K.: Modified Lennard-Jones potentials with a reduced temperature-correction parameter for calculating thermodynamic and transport properties: Noble gases and their mixtures (He, Ne, Ar, Kr, and Xe). J. Thermodyn. 2013, 828620 (2013)

    Google Scholar 

  • Olmos, D., Shizgal, B.D.: A pseudospectral method of solution of Fisher’s equation. J. Comput. Appl. Math. 193, 219–242 (2006)

    Google Scholar 

  • O’Neal, D., Neff, J.E.: OH 1.563\(\mu \) absorption from starspots on active stars. Astron. J. 113, 1129–1137 (1997)

    Google Scholar 

  • Ordzywolek, A.: Gaussian integration with rescaling abscissas and weights. Comput. Phys. Commun. 182, 2533–2539 (2011)

    ADS  Google Scholar 

  • Pack, R.T.: Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. Sudden approximation. J. Chem. Phys. 60, 633–639 (1974)

    Google Scholar 

  • Parr, R.G.: Density functional theory. Annu. Rev. Phys. Chem. 34, 631–656 (1983)

    ADS  Google Scholar 

  • Parr, R.G., Gosh, S.W.: Thomas-Fermi theory for atomic systems. Proc. Natl. Acad. Sci. 83, 3577–3579 (1986)

    ADS  Google Scholar 

  • Pask, J.E., Sukumar, N., Monsavi, S.E.: Linear scaling solution of the all-electron Coulomb problem in solids. Int. J. Multiscale Comput. Eng. 10, 83–99 (2012)

    Google Scholar 

  • Pastore, P.: The numerical treatment of Love’s integral equation having a small parameter. J. Comput. Appl. Math. 236, 1267–1281 (2011)

    MATH  MathSciNet  Google Scholar 

  • Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    MATH  Google Scholar 

  • Rasch, J., Whelan, C.T.: On the numerical evaluation of a class of integrals occurring in scattering problems. Comput. Phys. Commun. 101, 31–46 (1997)

    ADS  MATH  MathSciNet  Google Scholar 

  • Reine, S., Helgaker, T., Lindh, R.: Multi-electron integrals. WIREs Comput. Mol. Sci. 2, 290–303 (2012)

    Google Scholar 

  • Robson, R.E., Prytz, A.: A discrete ordinate pseudo-spectral method: review and application from a physicist’s perspective. Aust. J. Phys. 46, 465–495 (1993)

    ADS  Google Scholar 

  • Robson, R.E., Ness, K.F., Sneddon, G.E., Viehland, L.A.: Comment on the discrete ordinate method in the kinetic theory of gases. J. Comput. Phys. 92, 213–229 (1991)

    ADS  MATH  Google Scholar 

  • Rogers, G.L., Berman, P.R.: Exchange collision kernel. Phys. Rev. A 44, 417–432 (1991)

    Google Scholar 

  • Ross, J., Mazur, P.: Some deductions from a formal statistical mechanical theory of chemical kinetics. J. Chem. Phys. 35, 19–28 (1961)

    ADS  Google Scholar 

  • Rys, J., Dupuis, M., King, H.F.: Computation of electron repulsion integrals using Rys quadrature method. J. Comput. Chem. 4, 154–157 (1983)

    Google Scholar 

  • Sabbane, M., Tij, M., Santos, A.: Maxwellian gas undergoing a stationary Poiseuille flow in a pipe. Phys. A 327, 264–290 (2003)

    MATH  MathSciNet  Google Scholar 

  • Safouhi, H.: The properties of sine, spherical Bessel and reduced Bessel functions for improving convergence of semi-infinite very oscillatory integrals: the evaluation of three-centre nuclear attraction integrals over B-functions. J. Phys. A: Math. Gen. 34, 2801–2818 (2001)

    Google Scholar 

  • Sandberg, J.A.R., Rinkevicius, Z.: An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions. J. Chem. Phys. 137, 234105 (2012)

    ADS  Google Scholar 

  • Santos, A.: Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Contin. Mech. Thermodyn. 21, 361–387 (2009)

    Google Scholar 

  • Schumer, J.W., Holloway, J.P.: Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144, 626–661 (1998)

    ADS  MATH  Google Scholar 

  • Schwartz, C.: High-accuracy approximation techniques for analytic functions. J. Math. Phys. 26, 411–415 (1985)

    ADS  MATH  MathSciNet  Google Scholar 

  • Secrest, D., Johnson, B.R.: Exact quantum-mechanical calculation of a collinear collision of a particle with a harmonic oscillator. J. Chem. Phys. 45, 4556–4570 (1966)

    ADS  Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  • Shapiro, D.A.: Spectral line narrowing in the Keilson-Storer model. J. Phys. B: At. Mol. Opt. Phys. 33, L43–L49 (2000)

    ADS  Google Scholar 

  • Sharipov, F., Bertoldo, G.: Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential. J. Comput. Phys. 228, 3345–3357 (2009)

    ADS  MathSciNet  Google Scholar 

  • Shavitt, I., Karplus, M.: Gaussian-transform method for molecular integrals. I. Formulation of energy integrals. J. Chem. Phys. 43, 398–414 (1965)

    ADS  MathSciNet  Google Scholar 

  • Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms Analysis and Applications. Springer, Berlin (2011)

    Google Scholar 

  • Shizgal, B.: Kinetic theory calculation of NMR relaxation time for dilute \(^3\)He gas. J. Chem. Phys. 58, 3424–3431 (1973)

    ADS  Google Scholar 

  • Shizgal, B.: Calculation of the NMR relaxation time for dilute \(^{129}\)Xe gas. Chem. Phys. 5, 464–470 (1974a)

    ADS  Google Scholar 

  • Shizgal, B.: A method for the rapid calculation of matrix elements with highly oscillatory JWKB radial wavefunctions. Chem. Phys. Lett. 24, 369–372 (1974b)

    ADS  Google Scholar 

  • Shizgal, B.: A Gaussian quadrature procedure for the use in the solution of the Boltzmann equation and related problems. J. Comput. Phys. 41, 309–328 (1981)

    ADS  MATH  MathSciNet  Google Scholar 

  • Shizgal, B.D.: An analysis of O-H interaction potentials, O-H and O-D cross sections and vibrational states. Planet. Space. Sci. 47, 163–147 (1999)

    ADS  Google Scholar 

  • Shizgal, B., Fitzpatrick, J.M.: Matrix elements of the linear Boltzmann collision operator for systems of two components at different temperatures. Chem. Phys. 6, 54–65 (1974)

    ADS  Google Scholar 

  • Shizgal, B., Lindenfeld, M.J.: Energy distribution function of translationally hot O\((^3{P})\) atoms in the atmosphere of earth. Planet. Space Sci. 27, 1321–1332 (1979)

    ADS  Google Scholar 

  • Shizgal, B., Blackmore, R.: A discrete ordinate method of solution of linear boundary value and eigenvalue problems. J. Comput. Phys. 55, 313–327 (1984)

    ADS  MATH  MathSciNet  Google Scholar 

  • Shizgal, B., Hubert, D.: Nonequilibrium nature of ion distribution functions in the high latitude auroral ionosphere. In: Muntz, E.P., Weaver, D.P., Campbell, D.H. (eds.) Proceedings of the 16th International Symposium on Rarefied Gas Dynamics, pp. 3–22. AIAA, Washington (1989)

    Google Scholar 

  • Shizgal, B.D., Chen, H.: The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 104, 4137–4150 (1996)

    ADS  Google Scholar 

  • Shizgal, B.D., Chen, H.: The quadrature discretization method in the solution of the Fokker-Planck equation with nonclassical basis functions. J. Chem. Phys. 107, 8051–8063 (1997)

    ADS  Google Scholar 

  • Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Siewert, C.E.: On computing the Chapman-Enskog functions for viscosity and heat transfer and the Burnett functions. JQRST 74, 789–796 (2002)

    Google Scholar 

  • Slevinsky, M., Safouhi, H.: Numerical treatment of a twisted tail using extrapolation methods. Numer. Algorithm 48, 301–316 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  • Sospedra-Alfonso, R., Shizgal, B.D.: Henyey-Greenstein model in the shape relaxation of dilute gas mixtures. Trans. Theory Stat. Phys. 41, 368–388 (2012)

    ADS  MATH  Google Scholar 

  • Sospedra-Alfonso, R., Shizgal, B.D.: Energy and shape relaxation in binary atomic systems with realistic quantum cross sections. J. Chem. Phys. 139, 044113 (2013)

    ADS  Google Scholar 

  • St.-Maurice, J.-P., Schunk, R.W.: Use of generalized orthogonal polynomial solutions of Boltzmanns equation in certain aeronomy problems, Auroral ion velocity distributions. J. Geophys. Res. 81, 2145–2154 (1976)

    ADS  Google Scholar 

  • St.-Maurice, J.-P., Schunk, R.W.: Ion velocity distributions in the high-latitude ionosphere. Rev. Geophys. 17, 99–134 (1979)

    Google Scholar 

  • Stenger, F.: Numerical methods based on Sinc and analytic functions. Springer Series in Comp. Math. 20, 91–96 (1993)

    MathSciNet  Google Scholar 

  • Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice-Hall, New Jersey (1966)

    MATH  Google Scholar 

  • Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory. Dover, New York (1996)

    Google Scholar 

  • Szalay, V.: Discrete variable representations of differential operators. J. Chem. Phys. 99, 1978–1984 (1993)

    ADS  Google Scholar 

  • Szalay, V., Szidarovsky, T., Czakó, G., Császár, A.G.: A paradox of grid-based representation techniques: accurate eigenvalues from inaccurate matrix elements. J. Math. Chem. 50, 636–651 (2012)

    MATH  MathSciNet  Google Scholar 

  • Szalay, V., Czakó, G., Nagy, A., Furtenbacher, T., Császár, A.G.: On one-dimensional discrete variable representations with general basis functions. J. Chem. Phys. 119, 10512–10518 (2003)

    ADS  Google Scholar 

  • Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14, 594–606 (1993)

    MATH  MathSciNet  Google Scholar 

  • Taylor, J.R.: Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. Dover, New York (2012)

    Google Scholar 

  • Thomas, L.H.: The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927)

    Google Scholar 

  • Tomaschitz, R.: Multipole fine structure of the cosmic microwave background: reconstruction of the temperature power spectrum. Mon. Not. R. Astron. Soc. 427, 1363–1383 (2012)

    Google Scholar 

  • Tomaschitz, R.: Bessel integrals in epsilon expansion: squared spherical Bessel functions averaged with Gaussian power-law distributions. Appl. Math. Comput. 225, 228–241 (2013)

    ADS  MathSciNet  Google Scholar 

  • Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  • Treutler, O., Ahlrichs, R.: Efficient molecular numerical integration schemes. J. Chem. Phys. 102, 346–354 (1995)

    ADS  Google Scholar 

  • Truhlar, D.G., Wyatt, R.E.: History of H\(_3\) kinetics. Annu. Rev. Phys. Chem. 27, 1–43 (1976)

    ADS  Google Scholar 

  • Tsuneda, T.: Density Functional Theory in Quantum Chemistry. Springer, New York (2014)

    Google Scholar 

  • Ueda, M., Sargeant, A.J., Pato, M.P., Hussein, M.S.: Effective astrophysical S factor for nonresonant reactions. Phys. Rev. C 61, 045801 (2000)

    ADS  Google Scholar 

  • Viehland, L.A.: Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram-Charlier approach. Chem. Phys. 179, 71–92 (1994)

    ADS  Google Scholar 

  • Viehland, L.A., Chang, Y.: Transport cross sections for collisions between particles. Comput. Phys. Commun. 181, 1687–1696 (2010)

    ADS  MATH  Google Scholar 

  • Wei, H.: Ghost levels and near-variational forms of the discrete variable representation: application to H\(_2\)O. J. Chem. Phys. 106, 6885–6900 (1997)

    ADS  Google Scholar 

  • Wei, G.W.: Solving quantum eigenvalue problems by discrete singular convolution. J. Phys. B: At. Mol. Opt. Phys. 33, 343–352 (2000a)

    ADS  Google Scholar 

  • Wei, G.W.: Wavelets generated by using discrete singular convolution kernels. J. Phys. A: Math. Gen. 33, 8577–8596 (2000b)

    ADS  MATH  Google Scholar 

  • Weniger, E.J.: The strange history of B functions or how theoretical chemists and mathematicians do (not) interact. Int. J. Quant. Chem. 109, 1706–1716 (2009)

    ADS  Google Scholar 

  • Whittaker, J.M.: The Fourier theory of the Cardinal function. Proc. Roy. Soc. Edinb. 1, 169–176 (1929a)

    Google Scholar 

  • Whittaker, J.M.: On the Cardinal function of interpolation theory. Proc. Roy. Soc. Edinb. 1, 41–46 (1929b)

    Google Scholar 

  • Wick, G.C.: Über ebene diffusionsprobleme. Z. Phys. 121, 702–718 (1943)

    ADS  MATH  MathSciNet  Google Scholar 

  • Wigner, E.P., Wilkins Jr, J.E.: Effect of temperature of the moderator on the velocity distribution of neutrons with numerical calculations for H as moderator. Technical Report AECD-2275, US Atomic Energy Commission (1944)

    Google Scholar 

  • Willner, K., Dulieu, O., Masnou-Seeuws, F.: Mapped grid methods for long-range molecules and cold collisions. J. Chem. Phys. 120, 548–561 (2004)

    ADS  Google Scholar 

  • Wind, H.: Electron energy for H\(_2^+\) in the ground state. J. Chem. Phys. 42, 2371–2373 (1965)

    ADS  Google Scholar 

  • Wright, J.S., Donaldson, D.J.: Potential energy and vibrational levels for local modes in water and acetylene. Chem. Phys. 94, 15–23 (1985)

    ADS  Google Scholar 

  • Zhang, P., Kharchenko, V., Dalgarno, A.: Thermalization of suprathermal N(\(^4\)S) atoms in He and Ar gases. Mol. Phys. 105, 1487–1496 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Shizgal .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shizgal, B. (2015). Numerical Evaluation of Integrals and Derivatives. In: Spectral Methods in Chemistry and Physics. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9454-1_3

Download citation

Publish with us

Policies and ethics