Skip to main content

Vitamin A and Vision

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 81))

Abstract

Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAV:

adeno-associated virus

ABCA4:

ATP-binding cassette type 4

AMD:

age-related macular degeneration

A2E:

N-retinylidene-N-retinylethanolamine, a bisretinoid

At-Ral:

all-trans-retinal

At-RE:

all-trans-retinyl ester

At-Rol:

all-trans-retinol

CRABP:

cellular retinoic acid-binding protein

CRALBP:

cellular retinal-binding protein

CRBP1:

cellular retinol-binding protein type 1

DAPI:

4’,6-diamidino-2-phenylindole

IPM:

interphotoreceptor matrix

IRBP:

interphotoreceptor retinoid-binding protein

LCA:

Leber’s congenital amaurosis

MFAT:

multifunctional O-acyltransferase

NHERF1:

sodium hydrogen exchanger regulatory factor type 1

RDH:

retinol dehydrogenase

11-Ral:

11-cis-retinal

11-Rol:

11-cis-retinol

11-RE:

11-cis-retinyl ester

PA:

phosphatidic acid

PC:

phosphatidylcholine

PDZ:

postsynaptic density 95, discs large, ZO1

PE:

phosphatidylethanolamine

PI(3,4,5)P3:

phosphatidylinositol (3,4,5) tris-phosphate

PS:

phosphatidylserine

RalDi:

retinal dimer

RAR:

retinoic acid receptor

RBP:

retinol binding protein

Retinene:

earlier name for retinal

RGR-opsin:

retinal g-protein receptor opsin

RIP1 or −3 kinases:

receptor interacting protein kinases 1 or 3

ROS:

rod outer segments

RPE:

retinal pigment epithelial or epithelium

RPE65:

retinal pigment epithelial protein 65 kDa, aka isomerohydrolase

RXR:

retinoid X-receptor

SUV:

small unilamellar vesicles

TNFα:

tumor necrosis factor α

VCM:

visual cycle modulation

References

  1. Ablonczy Z, Higbee D, Anderson DM, Dahrouj M, Grey AC, Gutierrez D, Koutalos Y, Schey KL, Hanneken A, Crouch RK (2013) Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 54:5535–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adler AJ, Evans CD, Stafford WF III (1985) Molecular properties of bovine interphotoreceptor retinol-binding protein. J Biol Chem 260:4850–4855

    CAS  PubMed  Google Scholar 

  3. Adler L, Chen C, Koutalos Y (2014) Mitochondria contribute to NADPH generation in mouse rod photoreceptors. J Biol Chem 289:1519–1528

    Article  CAS  PubMed  Google Scholar 

  4. Ala-Laurila P, Kolesnikov AV, Crouch RK, Tsina E, Shukolyukov SA, Govardovskii VI, Koutalos Y, Wiggert B, Estevez ME, Cornwall MC (2006) Visual cycle: dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol 128:153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ala-Laurila P, Cornwall MC, Crouch RK, Kono M (2009) The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. J Biol Chem 284:16492–16500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alpern M (1971) Rhodopsin kinetics in the human eye. J Physiol 217:447–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Altman J (1985) New visions in photoreception. Nature 313:264–265

    Article  Google Scholar 

  8. Barry RJ, Canada FJ, Rando RR (1989) Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium. J Biol Chem 264:9231–9238

    CAS  PubMed  Google Scholar 

  9. Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–53979

    Article  CAS  PubMed  Google Scholar 

  10. Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A, Chiodo VA, Fajardo DS, Román AJ, Deng W-T, Swider M, Alemán TS, Boye SL, Genini S, Swaroop A, Hauswirth WW, Jacobson SG, Aguirre GD (2012) Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 109:2132–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernstein PS, Rando RR (1986) In vivo isomerization of all-trans- to 11-cis-retinoids in the eye occurs at the alcohol oxidation state. Biochemistry 25:6473–6478

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein PS, Law WC, Rando RR (1987) Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc Natl Acad Sci U S A 84:1849–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bok D, Ong DE, Chytil F (1984) Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest Ophthalmol Vis Sci 25:877–883

    CAS  PubMed  Google Scholar 

  14. Boll F (1876–1877) Zur anatomie und physiologie der retina. Verhandlungen der R Accademia dei Lincei, Dritte Serie, Erster Theil, English translation by Hubbard On the anatomy and physiology of the retina. Vision Res. 1977, 17:1249–1265

    Google Scholar 

  15. Bownds D, Wald G (1965) Reaction of the rhodopsin chromophore with sodium borohydride. Nature 205:254–257

    Article  CAS  PubMed  Google Scholar 

  16. Bunt-Milam AH, Saari JC (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol 97:703–712

    Article  CAS  PubMed  Google Scholar 

  17. Burstedt MS, Forsman-Semb K, Golovleva I, Janunger T, Wachtmeister L, Sandgren O (2001) Ocular phenotype of bothnia dystrophy, an autosomal recessive retinitis pigmentosa associated with an R234W mutation in the RLBP1 gene. Arch Ophthalmol 119:260–267

    CAS  PubMed  Google Scholar 

  18. Chen Y, Saari JC, Noy N (1993) Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry 32:11311–11318

    Article  CAS  PubMed  Google Scholar 

  19. Chen P, Hao W, Rife L, Wang XP, Shen D, Chen J, Ogden T, Van Boemel GB, Wu L, Yang M, Fong HK (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 28:256–269

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Tsina E, Cornwall MC, Crouch RK, Vijayaraghavan S, Koutalos Y (2005) Reduction of all-trans-retinal to all-trans-retinol in the outer segments of frog and mouse rod photoreceptors. Biophys J 88:2278–2287

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K (2012) Mechanisms of all-trans-retinal toxicity with implications for Stargardt disease and age-related macular degeneration. J Biol Chem 287:5059–5069

    Article  CAS  PubMed  Google Scholar 

  22. Collery R, McLoughlin S, Vendrell V, Finnegan J, Crabb JW, Saari JC, Kennedy BN (2008) Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Müller-CRALBP in cone vision. Invest Ophthalmol Vis Sci 49:3812–3820

    Article  PubMed  Google Scholar 

  23. Crescitelli F (1984) The gecko visual pigment: the dark exchange of chromophore. Vis Res 24:1551–1553

    Article  CAS  PubMed  Google Scholar 

  24. Danciger M, Matthes MT, Yasamura D, Akhmedov NB, Rickabaugh T, Gentleman S, Redmond RM, La Vail MM, Farber DB (2000) A QTL on distal chromosome 3 that influences the severity of light-induced damage to mouse photoreceptors. Mamm Genome 11:422–427

    Article  CAS  PubMed  Google Scholar 

  25. Das SR, Bhardwau N, Kjeldbye H, Gouras P (1992) Müller cells of chicken retina synthesize 11-cis-retinol. Biochem J 285:907–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dowling JE (1960) Chemistry of visual adaptation in the rat. Nature 188:114118

    Article  Google Scholar 

  27. Dowling JE, Wald G (1958) Vitamin A deficiency and night blindness. Proc Natl Acad Sci U S A 44:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duffy M, Sun Y, Wiggert B, Duncan T, Chader GJ, Ripps H (1993) Interphotoreceptor retinoid binding protein (IRBP) enhances rhodopsin regeneration in the experimentally detached retina. Exp Eye Res 57:771–782

    Article  CAS  PubMed  Google Scholar 

  29. Edwards RB, Adler AJ (2000) IRBP enhances removal of 11-cis-retinaldehyde from isolated RPE membranes. Exp Eye Res 70:235–245

    Article  CAS  PubMed  Google Scholar 

  30. Fain GL (2006) Why photoreceptors die (and why they don’t). BioEssays 28:344–354

    Article  CAS  PubMed  Google Scholar 

  31. Farjo KM, Moiseyev G, Takahashi Y, Crouch RK, Ma JX (2009) The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Invest Ophthalmol Vis Sci 50:5089–5097

    Article  PubMed  Google Scholar 

  32. Fischer EH, Kent AB, Snyder ER, Krebs EG (1958) The reaction of sodium borohydride with muscle phosphorylase. J Am Chem Soc 80:2906

    Article  CAS  Google Scholar 

  33. Fishkin N, Yefidoff R, Gollipalli DR, Rando RR (2005) On the mechanism of isomerization of all-trans-retinol to 11-cis-retinol in retinal pigment epithelial cells: 11-fluoro-all-trans-retinol as substrate/inhibitor in the visual cycle. Bioorg Med Chem 13:5189–5194

    Article  CAS  PubMed  Google Scholar 

  34. Fishkin NE, Sparrow JR, Allikmets R, Nakanishi K (2005) Isolation and characterization of a retinal pigment epithelial cell fluorophore: An all-trans-retinal dimer conjugate. Proc Natl Acad Sci U S A 102:7091–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC (2008) Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J Neurosci 28:8208–8216

    Article  CAS  PubMed  Google Scholar 

  36. Gallego O, Belyaeva OV, Porté S, Ruiz FX, Stetsneko AV, Shabrova EV, Kostereva NV, Farrés J, Pares X, Kedishvili NY (2006) Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochem J 399:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gearhart PM, Gearhart G, Thompson DH, Petersen-Jones SM (2010) Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. Arch Ophthalmol 128:1442–1448

    Article  CAS  PubMed  Google Scholar 

  38. Golczak M, Kuksa V, Maeda T, Moise AR, Palczewski K (2005) Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proc Natl Acad Sci U S A 102:8162–8167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldstein EM, Wolk BM (1973) Regeneration of the green-rod pigment in the isolated frog retina. Vis Res 13:527–534

    Article  CAS  PubMed  Google Scholar 

  40. Golobokova EY (2006) Govardovskii VI Late stages of visual pigment photolysis in situ: cones vs. rods. Vis Res 46:2287–2297

    Article  PubMed  Google Scholar 

  41. Gonzalez-Fernandez F, Gosh D (2008) Focus on molecules: interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 86:169–170

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez-Fernandez F, Sung D, Haswell KM, Tsin A, Ghosh D (2014) Thiol-dependent antioxidant activity of interphororeceptor retinoid-binding protein. Exp Eye Res 129:167–174

    Article  CAS  Google Scholar 

  43. Gu X, Crabb JS, Nawrot M, Saari JC, Crabb JW (2006) Quantitative mass spectrophometric analysis of visual cycle protein interactions. In: Proceedings of the 54 ASMS conference on mass spectrometry and allied topics. Seattle, May 28–June 1, 2006, Abstr citation no. A063296

    Google Scholar 

  44. Haeseleer F, Jang G-F, Imanishi Y, Driessen CAGG, Matsumura M, Nelson PS, Palczewski K (2002) Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 277:45537–45546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hao W, Fong HK (1999) The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem 274:6085–6090

    Article  CAS  PubMed  Google Scholar 

  46. He X, Lobsiger J, Stocker A (2009) Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc Natl Acad Sci U S A 44:18545–18550

    Article  Google Scholar 

  47. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    Article  CAS  PubMed  Google Scholar 

  48. Ho M-TP, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem 24:928–935

    Google Scholar 

  49. Hollyfield JG, Fliesler SJ, Rayborn ME, Fong S-L, Landers RA, Bridges CD (1985) Synthesis and secretion of interstitial retinol-binding protein by the human retina. Invest Ophthalmol Vis Sci 26:58–67

    CAS  PubMed  Google Scholar 

  50. Holz FG, Bellman C, Staudt S, Schütt F, Völcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056

    CAS  PubMed  Google Scholar 

  51. Huang J, Possin DE, Saari JC (2009) Localizations of visual cycle components in retinal pigment epithelium. Mol Vis 15:223–234

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hubbard R, Wald G (1952) Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol 36:269–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Illing M, Molday LL, Molday RS (1997) The 220 kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310

    Article  CAS  PubMed  Google Scholar 

  54. Imanishi Y, Palczewski K (2010) Visualization of retinoid storage and trafficking by two-photon microscopy. Methods Mol Biol 652:247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Imanishi Y, Batten ML, Piston DW, Baehr W, Palczewski K (2004) Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J Cell Biol 164:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Insinna C, Daniele LL, Davis JA, Larsen DD, Kuemmel C, Wang J, Nikonov SS, Knox BE, Pugh EN Jr (2012) An S-opsin knock-in mouse (P81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. J Neurosci 32:8094–8104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Isler O (1977) Progress in the field of fat-soluble vitamins and carotenoids. Experientia 33:555–573

    Article  CAS  PubMed  Google Scholar 

  58. Jacobs GH (2008) Primate color vision: a comparative perspective. Vis Neurosci 25:619–633

    Article  PubMed  Google Scholar 

  59. Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jin M, Li S, Nusinowitz S, Lloyd M, Hu J, Radu RA, Bok D, Travis GH (2009) The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. J Neurosci 29:1486–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jones GJ, Crouch RK, Wiggert B, Cornwall MC, Chader GJ (1989) Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A 86:9606–9610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karrer P, Morf R, Schöpp K (1931) Zur kenntnis des vitamins A aus fischtranen. Helv Chim Acta 14:1431–1436, 1036–1040

    Article  CAS  Google Scholar 

  63. Kaufman Y, Ma L, Washington I (2011) Deuterium enrichment of vitamin A at the C20 position slows the formation of deterimental vitamin A dimers in wild-type rodents. J Biol Chem 286:7958–7965

    Article  CAS  PubMed  Google Scholar 

  64. Kaupp UB, Koch K-W (1986) Mechanism of photoreception in vertebrate vision. Trends in Biochem Sci (TIBS) 11:43–47

    Article  CAS  Google Scholar 

  65. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825

    Article  CAS  PubMed  Google Scholar 

  66. Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH (2013) Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 9:30–36

    Article  CAS  PubMed  Google Scholar 

  67. Kaylor JJ, Cook JD, Makshanoff J, Bischoff N, Yong J, Travis GH (2014) Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 111:7302–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kefalov VJ (2012) Rod and cone visual pigments and phototransduction through pharmacological, genetic, and phpysiological approaches. J Biol Chem 287:1635–1641

    Article  CAS  PubMed  Google Scholar 

  69. Kefalov VJ, Estevez ME, Kono M, Goletz PW, Crouch RK, Cornwall MC, Yau K-W (2005) Breaking the covalent bond-A pigment property that contributes to desensitization in cones. Neuron 46:879–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kiser PD, Golczak M, Maeda A, Palczewski K (2012) Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta 1821:137–151

    Article  CAS  PubMed  Google Scholar 

  71. Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232

    Article  CAS  PubMed  Google Scholar 

  72. Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D (2012) Safety and effect on rod function of ACU-4429, a novel small molecule visual cycle modulator. Retina 32:183–188

    Article  PubMed  Google Scholar 

  73. Kühne W (1879) Chemische vorgänge in der netzhaut. In: Hofmann L (ed) Handbuch der Physiology, vol 3, part 1. Leipzig, FCW Vogel. English translation by Hubbard and Wald, Chemical processes in the retina. Vision Res 1977,17:1269–1316

    Google Scholar 

  74. Kumar S, Sandell LL, Trainor PA, Koentgen F, Duester G (2012) Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochim Biophys Acta 1821:198–205

    Article  CAS  PubMed  Google Scholar 

  75. Lai YL, Wiggert B, Liu YP, Chader GJ (1982) Interphotoreceptor retinol-binding protein: possible transport vehicles between compartments of the retina. Nature 298:848–849

    Article  CAS  PubMed  Google Scholar 

  76. Lamb TD, Pugh EN Jr (2004) Dark adaptation and the retinoid cycle of vision. Prog Retinal Eye Res 23:307–380

    Article  CAS  Google Scholar 

  77. Lamb TD, Pugh EN Jr (2006) Phototransduction, dark adaptation, and rhodopsin regeneration. The proctor lecture. Invest Ophthalmol Vis Sci 47:5138–5152

    Article  Google Scholar 

  78. Lanska DJ (2010) Chapter 29. Historical aspects of the major neurological vitamin deficiency disorders: overview and fat-soluble A. Handb Clin Neurol 95:435–444

    Article  PubMed  Google Scholar 

  79. Lee KA, Nawrot M, Garwin GG, Saari JC, Hurley JB (2010) Relationships among visual cycle retinoids, rhodopsin phosphorylation, and phototransduction in mouse eyes during light and dark adaptation. Biochemistry 49:2454–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li S, Yang Z, Hu J, Gordon WC, Bazan NG, Haas AL, Bok D, Jin M (2013) Secretory defect and cytotoxicity: the potential disease mechanisms for the retinitis pigmentosa (RP)-associated interphotoreceptor retinoid-binding protein (IRBP). J Biol Chem 288:11395–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. Lancet 379:1728–1738

    Article  PubMed  Google Scholar 

  82. Liou GI, Bridges CDB, Fong S-L, Alvarez RA, Gonzalez-Fernandez F (1982) Vitamin A transport between retina and pigment epithelium – an interstitial protein carrying endogenous retinol (interstitial retinol-binding protein). Vis Res 22:1457–1467

    Article  CAS  PubMed  Google Scholar 

  83. Lobanova ES, Finkelstein S, Skiba NP, Skiba NP, Arshavsky VY (2013) Proteosome overload is a common stress factor in multiple forms of inherited retinal degeneration. Proc Natl Acad Sci U S A 110:9986–9991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ma L, Kaufman Y, Zhang J, Washington I (2011) C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem 286:7966–7974

    Article  CAS  PubMed  Google Scholar 

  85. Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maeda A, Golczak M, Chen Y, Okano K, Kohno H, Shiose S, Ishikawa K, Harte W, Placzewska G, Maeda T, Palczewski K (2012) Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat Chem Biol 8:170–178

    Article  CAS  Google Scholar 

  87. Maeda T, Dong Z, Jin H, Sawada O, Gao S, Utkhede D, Monk W, Palczewska G, Palczewski K (2013) QLT091001, a 9-cis-retinal analog, is well tolerated by retinas of mice with impaired visual cycles. Invest Ophthalmol Vis Sci 54:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maiti P, Kong J, Kim SR, Sparrow JR, Alikmets R, Rando RR (2006) Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 45:852–860

    Article  CAS  PubMed  Google Scholar 

  89. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 97:7154–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mata NL, Radu RA, Clemmons RS, Travis GH (2002) Isomerization and oxidation of vitamin A in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsumoto H, Tokunaga F, Yoshizama T (1975) Accessibility of the iodopsin chromophore. Biochim Biophys Acta 404:300–308

    Article  CAS  PubMed  Google Scholar 

  92. McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity; the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20:469–529

    Article  CAS  PubMed  Google Scholar 

  93. Mihai DM, Jiang H, Blaner WS, Romanov A, Washington I (2013) The retina rapidly incorporates ingested C20-D3-vitamin A in a swine model. Mol Vis 19:1677–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Miyazono S, Shimauchi-Matsukawa Y, Tachibanaki S, Kawamura S (2008) Highly efficient retinal metabolism in cones. Proc Natl Acad Sci U S A 105:16051–16056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102:12414–12418

    Article  CAS  Google Scholar 

  96. Morton RA, Pitt GAJ (1957) Visual pigments. Fortschr Chem Org Naturst XIV:244–316

    Google Scholar 

  97. Muniz A, Betts BS, Trevino AR, Buddavarapu K, Roman R, Ma J-X, Tsin TC (2009) Evidence for two retinoid cycles in the cone-dominant chicken eye. Biochemistry 48:6854–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Napoli JL (2012) Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta 1821:152–167

    Article  CAS  PubMed  Google Scholar 

  99. Nawrot M, West K, Huang J, Possin DE, Bretscher A, Crabb JW, Saari JC (2004) Cellular retinaldehyde-binding protein interacts with ERM-binding phosphoprotein 50 in retinal pigment epithelium. Invest Ophthalmol Vis Sci 45:393–401

    Article  PubMed  Google Scholar 

  100. Nawrot M, Liu T, Garwin GG, Crabb JW, Saari JC (2006) Scaffold proteins and the regeneration of visual pigments. Photochem Photobiol 82:1482–1488

    CAS  PubMed  Google Scholar 

  101. Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Okajima T-IL, Pepperberg DR, Ripps H, Wiggert B, Chader GJ (1989) Interphotoreceptor retinoid-binding protein: role in delivery of retinol to the pigment epithelium. Exp Eye Res 49:629–644

    Article  CAS  PubMed  Google Scholar 

  103. Oroshnik W, Brown PK, Hubbard R, Wald G (1956) Hindered cis-isomers of vitamin A and retinene: the structure of the neo b-isomer. Proc Natl Acad Sci U S A 42:578–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Palczewski K (2010) Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 31:284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619

    Article  CAS  PubMed  Google Scholar 

  106. Palczewski K, Van Hooser JP, Garwin GG, Chen J, Liou GI, Saari JC (1999) Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin. Biochemistry 38:12012–12019

    Article  CAS  PubMed  Google Scholar 

  107. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  108. Parker RO, Crouch RK (2010) Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res 91:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Poliakov E, Parikh T, Ayele M, Kuo S, Chander P, Gentleman S, Redmond TM (2011) Aromatic lipophilic spin traps effectively inhibit RPE65 isomerohydrolase activity. Biochemistry 50:6739–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Posch KC, Boerman MHEM, Burns RD, Napoli JL (1991) Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Biochemistry 30:6224–6230

    Article  CAS  PubMed  Google Scholar 

  111. Puntel A, Maeda A, Golczak M, Gao S-Q, Yu G, Palczewski K, Lu Z-R (2015) Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials 44:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Quazi F, Molday RS (2014) ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc Natl Acad Sci U S A 111:5024–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 100:4742–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH (2008) Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem 283:19730–19738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rando RR (1990) The chemistry of vitamin A and vision. Angew Chem Int Ed Engl 29:461–480

    Article  Google Scholar 

  116. Rando RR (2001) The biochemistry of the visual cycle. Chem Rev 101:1881–1896

    Article  CAS  PubMed  Google Scholar 

  117. Rattner A, Smallwood PM, Nathans J (2000) Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem 275:11034–11043

    Article  CAS  PubMed  Google Scholar 

  118. Redmond TM, Poliakov E, Yu S, Tsai J-Y, Lu Z, Gentleman S (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 102:13658–13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Redmond TM, Poliakov E, Kuo S, Chander P, Gentleman S (2010) RPE65, visual cycle retinol isomerase, is not inherently 11-cis-specific: support for a carbocation mechanism of retinol isomerization. J Biol Chem 285:1919–1927

    Article  CAS  PubMed  Google Scholar 

  120. Ren RF, Sakai N, Nakanishi K (1997) Total synthesis of the ocular age pigment ‘A2E’: a convergent pathway. J Am Chem Soc 119:3619–3620

    Article  CAS  Google Scholar 

  121. Ripps H, Peachey NS, Xu X, Nozell SE, Smith SB, Liou GI (2000) The rhodopsin cycle is prserved in IRBP “knockout” mice despite abnormalities in retinal structure and function. Vis Neurosci 17:97–105

    Article  CAS  PubMed  Google Scholar 

  122. Rodieck RW (1998) The first steps in seeing. Sinauer, Sunderland

    Google Scholar 

  123. Rosenfeld L (1997) Vitamine-vitamin. The early years of discovery. Clin Chem 43:680–685

    CAS  PubMed  Google Scholar 

  124. Rushton WAH (1965) The ferrier lecture, 1962. Visual adaptation. Proc Roy Soc Lond Series B 162:20–46

    Article  CAS  Google Scholar 

  125. Saari JC (2012) Vitamin A, metabolism in rod and cone visual cycle. Annu Rev Nutr 32:125–145

    Article  CAS  PubMed  Google Scholar 

  126. Saari JC, Bredberg L (1982) Enzymatic reduction of 11-cis-retinal bound to cellular retinal-binding protein. Biochim Biophys Acta 716:266–272

    Article  CAS  PubMed  Google Scholar 

  127. Saari JC, Bredberg DL (1988) CoA- and non-CoA-dependent retinol esterification in retinal pigment epithelium. J Biol Chem 263:8084–8090

    CAS  PubMed  Google Scholar 

  128. Saari JC, Bredberg DL (1989) Lecithin:retinol acyltransferase in retinal pigment microsomes. J Biol Chem 264:8636–8640

    CAS  PubMed  Google Scholar 

  129. Saari JC, Crabb JW (2005) Focus on molecules: cellular retinaldehyde-binding protein (CRALBP). Exp Eye Res 81:245–246

    Article  CAS  PubMed  Google Scholar 

  130. Saari JC, Bredberg L, Garwin GG (1982) Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257:13329–13333

    CAS  PubMed  Google Scholar 

  131. Saari JC, Bunt-Milam AH, Bredberg DL, Garwin GG (1984) Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vis Res 24:1595–1603

    Article  CAS  PubMed  Google Scholar 

  132. Saari JC, Teller DC, Crabb JW, Bredberg L (1985) Properties of an interphotoreceptor retinoid-binding protein from bovine retina. J Biol Chem 260:195–201

    CAS  PubMed  Google Scholar 

  133. Saari JC, Bredberg DL, Noy N (1994) Control of substrate flow at a branch in the visual cycle. Biochemistry 33:3106–3112

    Article  CAS  PubMed  Google Scholar 

  134. Saari JC, Huang J, Asson-Batres MA, Champer RJ, Garwin G, Crabb JW, Possin DE, Milam H (1995) Evidence of retinoid metabolism within cells of inner retina. Exp Eye Res 60:209–212

    Article  CAS  PubMed  Google Scholar 

  135. Saari JC, Garwin GG, Van Hooser JP, Palczewski K (1998) Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vis Res 38:1325–1333

    Article  CAS  PubMed  Google Scholar 

  136. Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, Huang J, Possin DE, Crabb JW (2001) Visual cycle impairment in cellular retinaldehyde-binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739–748

    Article  CAS  PubMed  Google Scholar 

  137. Saari JC, Nawrot M, Garwin GG, Kennedy MJ, Hurley JB, Ghyselinck NB, Chambon P (2002) Analysis of the visual cycle in cellular retinol-binding protein type 1 (CRBP1) knockout mice. Invest Ophthalmol Vis Sci 43:1730–1735

    PubMed  Google Scholar 

  138. Saari JC, Nawrot M, Stenkamp RE, Teller DC, Garwin GG (2009) Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol Vis 15:844–854

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Saibil H (1982) Rival transmitters in visual transduction. Nature 297:106–107

    Article  CAS  PubMed  Google Scholar 

  140. Sakai N, Decatur J, Nakanishi K (1996) Ocular age pigment “A2-E”, an unprecedented pyridinium bisretinoid. J Am Chem Soc 118:1559–1560

    Article  CAS  Google Scholar 

  141. Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K (2011) Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 286:10551–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sakmar TP (2006) Timing is everything: direct measurement of retinol production in cones and rods. J Gen Physiol 128:147–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sato K, Li S, Gordon WC, He J, Liou GI, Hill JM, Travis GH, Bazan NG, Jin M (2013) Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 30:17458–17468

    Article  CAS  Google Scholar 

  144. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe H-W, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:496–502

    Article  CAS  Google Scholar 

  145. Schultze M (1866) Zur anatomie und physiologie der retina. Arch Mikr Anat 2:176–286

    Google Scholar 

  146. Semba RD (2012) On the ‘Discovery’ of vitamin A. Ann Nutr Metab 61:192–198

    Article  CAS  PubMed  Google Scholar 

  147. Sieving PA, Chaudhry P, Kondo M, Provenzano M, Wu D, Carlson TJ, Bush RA, Thompson DA (2001) Inhibition of the visual cycle in vivo by 13-cis-retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc Natl Acad Sci U S A 98:1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S, Marshall K, Banfi S, Surace EM, Sun J, Redmond TM, Zhu X, Shindler KS, Ying GS, Ziviello C, Acerra C, Wright JF, McDonnell JW, High KA, Bennett J, Auricchio A (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650

    Article  CAS  PubMed  Google Scholar 

  149. Smith R, Bernstein PS, Curcio A (2013) Rethinking A2E. Invest Ophthalmol Vis Sci 54:5543

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sommer A (2008) Vitamin A, deficiency and clinical disease: an historical overview. J Nutr 138:1835–1839

    CAS  PubMed  Google Scholar 

  151. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135

    Article  CAS  PubMed  Google Scholar 

  152. Sparrow JR, Dowling JE, Bok D (2013) Understanding RPE lipofuscin. Invest Ophthalmol Vis Sci 54:8325–8326

    Article  PubMed  PubMed Central  Google Scholar 

  153. Stecher H, Gelb MH, Saari JC, Palczewski K (1999) Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem 274:8577–8585

    Article  CAS  PubMed  Google Scholar 

  154. Strauss O (2006) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  Google Scholar 

  155. Sun H (2012) Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives. Biochim Biophys Acta 1821:99–112

    Article  CAS  PubMed  Google Scholar 

  156. Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outr segments. Nat Genet 15:15–16

    Article  Google Scholar 

  157. Swaroop A, Chem EY, Bowes Rickman C, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma J-X (2011) An alternative isomerohydrolase in the retinal Muller cells of a cone-dominant species. FEBS J 278:2913–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK (2013) New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 32:48–63

    Article  PubMed  CAS  Google Scholar 

  160. Thompson DA, Gal A (2003) Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 22:683–703

    Article  CAS  PubMed  Google Scholar 

  161. Travis GH, Golczak M, Moise AR, Palczewski K (2006) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol 47:469–512

    Article  CAS  Google Scholar 

  162. Van Hooser JP, Liang Y, Maeda T, Kuksa V, Jang G-F, He YG, Rieke F, Fong H, Detwiler PB, Palczewski K (2002) Recovery of visual functions in a mouse model of Leber congenital amaurosis. J Biol Chem 277:19173–19182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wald G (1934–1934) Vitamin A in eye tissues. J Gen Physiol 18:905–915

    Google Scholar 

  164. Wald G (1935–1936) Carotenoids and the visual cycle. J Gen Physiol 19:351–371

    Google Scholar 

  165. Wald G (1965) Visual excitation and blood clotting. Science 150:1028–1030

    Article  CAS  PubMed  Google Scholar 

  166. Wald G (1968) Molecular basis of visual excitation. Science 162:230–239

    Article  CAS  PubMed  Google Scholar 

  167. Wald G, Hubbard R (1949) The reduction of retinene1 to vitamin A1 in vitro. J Gen Physiol 32:367–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang J-S, Kefalov VJ (2009) An alternative pathway mediates the mouse and human cone visual cycle. Curr Biol 19:1665–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang J-S, Kefalov VJ (2011) The cone-specific visual cycle. Prog Retin Eye Res 30:115–128

    Article  CAS  PubMed  Google Scholar 

  170. Wang J-S, Estevez ME, Cornwall MC, Kefalov VJ (2009) Intra-retinal visual cycle required for rapid cone dark adaptation. Nat Neurosci 12:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  PubMed  Google Scholar 

  172. Winkler BS, DeSantis N, Solomon F (1986) Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Exp Eye Res 43:829–847

    Article  CAS  PubMed  Google Scholar 

  173. Winston A, Rando RR (1998) Regulation of isomerohydrolase activity in the visual cycle. Biochemistry 37:2044–2050

    Article  CAS  PubMed  Google Scholar 

  174. Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, Flannery JG, Corbo JC, Kefalov VJ (2015) CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 125:727–738

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yost RW, Harrison EH, Ross AC (1988) Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. J Biol Chem 263:18693–18701

    CAS  PubMed  Google Scholar 

  176. Zhang T, Enemchukwu NO, Jones A, Wang S, Dennis E, Watt CB, Pugh EN Jr, Fu Y (2015) Genetic deletion of S-opsin [prevents rapid cone degeneration in a mouse model of Leber congenital amaurosis. Hum Molec Gen 24:1755–1763

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Departments of Biochemistry and Ophthalmology at the University of Washington during preparation of this Chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Saari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saari, J.C. (2016). Vitamin A and Vision. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling II. Subcellular Biochemistry, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0945-1_9

Download citation

Publish with us

Policies and ethics