Skip to main content

Prediction of Protein Aggregation and Amyloid Formation

  • Chapter
  • First Online:
From Protein Structure to Function with Bioinformatics

Abstract

Protein aggregation accounts for the onset of more than 40 human disorders, including neurodegenerative diseases like Alzheimer’s and Parkinson’s but also non-neuropathic pathologies like Diabetes type II or some types of cancers. In all these diseases, the toxic effect is associated with the self-assembly of proteins into insoluble amyloid fibrils displaying a common regular cross-β structure . Surprisingly, cells also exploit the amyloid fold for important physiological processes, from structure scaffolding to heritable information transmission. In addition, protein aggregation often occurs during the recombinant production and downstream processing of therapeutic proteins, becoming the main bottleneck in the marketing of these drugs. In this context, approaches aiming to predict the aggregation and amyloid formation propensities of proteins are receiving increasing interest, both because they can lead us to the development of novel therapeutic strategies and because they are providing us with a global understanding of the role of protein aggregation in physiological and pathological processes. Here we illustrate how our present understanding of the physico-chemical and structural basis of protein aggregation has crystalized in the development of algorithms able to forecast the aggregation properties of proteins both from their primary and tertiary structures. A detailed description of these computational approaches and their application is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeln S, Frenkel D (2008) Disordered flanks prevent peptide aggregation. PLoS Comput Biol 4:e1000241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aggarwal S (2009) What’s fueling the biotech engine–2008. Nat Biotechnol 27:987–993

    Article  CAS  PubMed  Google Scholar 

  • Alberti S, Halfmann R, King O et al (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  • Ashenberg O, Gong LI, Bloom JD (2013) Mutational effects on stability are largely conserved during protein evolution. Proc Natl Acad Sci USA 110:21071–21076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auer S, Meersman F, Dobson CM, Vendruscolo M (2008) A generic mechanism of emergence of amyloid protofilaments from disordered oligomeric aggregates. PLoS Comput Biol 4:e1000222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldwin AJ, Knowles TPJ, Tartaglia GG et al (2011) Metastability of native proteins and the phenomenon of amyloid formation. J Am Chem Soc 133:14160–14163

    Article  CAS  PubMed  Google Scholar 

  • Belli M, Ramazzotti M, Chiti F (2011) Prediction of amyloid aggregation in vivo. EMBO Rep 12:657–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black SD, Mould DR (1991) Development of hydrophobicity parameters to analyze proteins which bear post or cotranslational modifications. Anal Biochem 193:72–82

    Article  CAS  PubMed  Google Scholar 

  • Blanco LP, Evans ML, Smith DR et al (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73

    Article  CAS  PubMed  Google Scholar 

  • Broome BM, Hecht MH (2000) Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J Mol Biol 296:961–968

    Article  CAS  PubMed  Google Scholar 

  • Bryan AW, Menke M, Cowen LJ et al (2009) BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 5:e1000333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryan AW, O’Donnell CW, Menke M et al (2012) STITCHER: Dynamic assembly of likely amyloid and prion??-structures from secondary structure predictions. Proteins Struct Funct Bioinforma 80:410–420

    Article  CAS  Google Scholar 

  • Bryan PN, Orban J (2010) Proteins that switch folds. Curr Opin Struct Biol 20:482–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck PM, Kumar S, Singh SK (2013) On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 9:e1003291

    Article  PubMed  PubMed Central  Google Scholar 

  • Buell AK, Tartaglia GG, Birkett NR et al (2009) Position-dependent electrostatic protection against protein aggregation. Chem Bio Chem 10:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Bui JM, Cavalli A, Gsponer Ö (2008) Identification of aggregation-prone elements by using interaction-energy matrices. Angew Chemie—Int Ed 47:7267–7269

    Article  CAS  Google Scholar 

  • Caflisch A (2006) Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol 10:437–444

    Article  CAS  PubMed  Google Scholar 

  • Carrió M, González-Montalbán N, Vera A et al (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Castillo V, Espargaró A, Gordo V et al (2010) Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Proteomics 10:4172–4185

    Article  CAS  PubMed  Google Scholar 

  • Castillo V, Graña-Montes R, Sabate R, Ventura S (2011) Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol J 6:674–685

    Article  CAS  PubMed  Google Scholar 

  • Castillo V, Ventura S (2009) Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Comput Biol 5:e1000476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan W, Helms LR, Brooks I et al (1996) Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobulin VL domain REI. Fold Des 1:77–89

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Dokholyan NV (2008) Natural selection against protein aggregation on self-interacting and essential proteins in yeast, fly, and worm. Mol Biol Evol 25:1530–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chennamsetty N, Voynov V, Kayser V et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 106:11937–11942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon M, Chang I, Mohanty S et al (2007) Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comput Biol 3:1727–1738

    Article  CAS  PubMed  Google Scholar 

  • Cherny I, Gazit E (2008) Amyloids: Not only pathological agents but also ordered nanomaterials. Angew Chemie—Int Ed 47:4062–4069

    Article  CAS  Google Scholar 

  • Chiti F, Calamai M, Taddei N et al (2002a) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci USA 99(Suppl 4):16419–16426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Stefani M, Taddei N et al (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Taddei N, Baroni F et al (2002b) Kinetic partitioning of protein folding and aggregation. Nat Struct Biol 9:137–143

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Taddei N, Bucciantini M et al (2000) Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J 19:1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222

    Article  CAS  PubMed  Google Scholar 

  • Colonna-Cesari F, Sander C (1990) Excluded volume approximation to protein-solvent interaction The solvent contact model. Biophys J 57:1103–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conchillo-Solé O, de Groot NS, Avilés FX et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cromwell MEM, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:E572–E579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari M, Espargaro A, Sabate R et al (2011) Bacterial inclusion bodies of Alzheimer’s disease β-Amyloid peptides can be employed to study native-like aggregation intermediate states. Chem Bio Chem 12:407–423

    Article  CAS  PubMed  Google Scholar 

  • De Baets G, Reumers J, Delgado Blanco J et al (2011) An evolutionary trade-off between protein turnover rate and protein aggregation favors a higher aggregation propensity in fast degrading proteins. PLoS Comput Biol 7:e1002090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Groot NS, Aviles FX, Vendrell J, Ventura S (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J 273:658–668

    Article  PubMed  CAS  Google Scholar 

  • de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34:408–416

    Article  PubMed  CAS  Google Scholar 

  • de Groot NS, Ventura S (2010) Protein aggregation profile of the bacterial cytosol. PLoS ONE 5:e9383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Simone A, Kitchen C, Kwan AH et al (2012) Intrinsic disorder modulates protein self-assembly and aggregation. Proc Natl Acad Sci USA 109:6951–6956

    Article  PubMed  PubMed Central  Google Scholar 

  • Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  • Dodson GG, Lane DP, Verma CS (2008) Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep 9:144–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP et al (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  • DuBay KF, Pawar AP, Chiti F et al (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol Biol 341:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  • Emily M, Talvas A, Delamarche C (2013) MetAmyl: A METa-predictor for AMYLoid proteins. PLoS One

    Google Scholar 

  • Esler WP, Stimson ER, Ghilardi JR et al (1996) Point substitution in the central hydrophobic cluster of a human?? amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry 35:13914–13921

    Article  CAS  PubMed  Google Scholar 

  • Espargaró A, Castillo V, de Groot NS, Ventura S (2008) The in vivo and in vitro aggregation properties of globular proteins correlate with their conformational stability: the SH3 case. J Mol Biol 378:1116–1131

    Article  PubMed  CAS  Google Scholar 

  • Espinosa Angarica V, Ventura S, Sancho J (2013) Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genom 14:316

    Article  CAS  Google Scholar 

  • Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Flock T, Weatheritt RJ, Latysheva NS, Babu MM (2014) Controlling entropy to tune the functions of intrinsically disordered regions. Curr Opin Struct Biol 26:62–72

    Article  CAS  PubMed  Google Scholar 

  • Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32:217–224

    Article  CAS  PubMed  Google Scholar 

  • Fraga H, Graña-Montes R, Illa R et al (2014) Association between foldability and aggregation propensity in small disulfide-rich proteins. Antioxid Redox Signal 21:368–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frousios KK, Iconomidou VA, Karletidi C-M, Hamodrakas SJ (2009) Amyloidogenic determinants are usually not buried. BMC Struct Biol 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006a) Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2:e177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006b) FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22:2948–2949

    Article  CAS  PubMed  Google Scholar 

  • Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332

    Article  CAS  PubMed  Google Scholar 

  • Gasior P, Kotulska M (2014) FISH Amyloid—a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids. BMC Bioinformatics 15:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebbink MFBG, Claessen D, Bouma B et al (2005) Amyloids–a functional coat for microorganisms. Nat Rev Microbiol 3:333–341

    Article  CAS  PubMed  Google Scholar 

  • Gershenson A, Gierasch LM, Pastore A, Radford SE (2014) Energy landscapes of functional proteins are inherently risky. Nat Publ Gr 10:884–891

    CAS  Google Scholar 

  • Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107:3487–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grantcharova VP, Baker D (2001) Circularization changes the folding transition state of the src SH3 domain. J Mol Biol 306:555–563

    Article  CAS  PubMed  Google Scholar 

  • Graña-Montes R, de Groot NS, Castillo V et al (2012a) Contribution of disulfide bonds to stability, folding, and amyloid fibril formation: the PI3-SH3 domain case. Antioxid Redox Signal 16:1–15

    Article  PubMed  CAS  Google Scholar 

  • Graña-Montes R, Marinelli P, Reverter D, Ventura S (2014) N-terminal protein tails act as aggregation protective entropic bristles: the SUMO case. Biomacromolecules 15:1194–1203

    Article  PubMed  CAS  Google Scholar 

  • Graña-Montes R, Sant’anna de Oliveira R, Ventura S (2012b) Protein aggregation profile of the human kinome. Front Physiol 3:438

    Article  PubMed  PubMed Central  Google Scholar 

  • Gromiha MM, Thangakani AM, Kumar S, Velmurugan D (2012) Sequence analysis and discrimination of amyloid and non-amyloid Peptides. pp 447–452

    Google Scholar 

  • Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387

    Article  CAS  PubMed  Google Scholar 

  • Hamodrakas SJ (1988) A protein secondary structure prediction scheme for the IBM PC and compatibles. Bioinformatics 4:473–477

    Article  CAS  Google Scholar 

  • Hamodrakas SJ, Liappa C, Iconomidou VA (2007) Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins. Int J Biol Macromol 41:295–300

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Hauser CAE, Maurer-Stroh S, Martins IC (2014) Amyloid-based nanosensors and nanodevices. Chem Soc Rev 43:5326–5345

    Article  CAS  PubMed  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  CAS  PubMed  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J et al (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease beta A4 peptides. J Mol Biol 228:460–473

    Article  CAS  PubMed  Google Scholar 

  • Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and their amyloidogenic propensity: clues from inclusion body formation. Protein Eng Des Sel 18:175–180

    Article  CAS  PubMed  Google Scholar 

  • Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44:1541–1554

    Article  CAS  PubMed  Google Scholar 

  • Ivankov DN, Garbuzynskiy SO, Alm E et al (2003) Contact order revisited: influence of protein size on the folding rate. Protein Sci 12:2057–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova MI, Sawaya MR, Gingery M et al (2004) An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci USA 101:10584–10589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn TR, Radford SE (2005) The Yin and Yang of protein folding. FEBS J 272:5962–5970

    Article  CAS  PubMed  Google Scholar 

  • Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469:100–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamroz M, Kolinski A, Kmiecik S (2013a) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41:427–431

    Article  Google Scholar 

  • Jamroz M, Orozco M, Kolinski A, Kmiecik S (2013b) Consistent view of protein fluctuations from all-atom molecular dynamics and coarse-grained dynamics with knowledge-based force-field. J Chem Theory Comput 9:119–125

    Article  CAS  PubMed  Google Scholar 

  • Kajava AV, Baxa U, Wickner RB, Steven AC (2004) A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc Natl Acad Sci USA 101:7885–7890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  CAS  PubMed  Google Scholar 

  • Kawashima S, Pokarowski P, Pokarowska M et al (2007) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiel C, Aydin D, Serrano L (2008) Association rate constants of ras-effector interactions are evolutionarily conserved. PLoS Comput Biol 4:e1000245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim C, Choi J, Lee SJ et al (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37:469–473

    Article  CAS  Google Scholar 

  • Kim YE, Hipp MS, Bracher A et al (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Knowles TP, Fitzpatrick AW, Meehan S et al (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318:1900–1903

    Article  CAS  PubMed  Google Scholar 

  • Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17:48–57

    Article  CAS  PubMed  Google Scholar 

  • Krebs MRH, Morozova-Roche LA, Daniel K et al (2004) Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Sci 13:1933–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger E, Vriend G (2014) YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30:1–2

    Article  CAS  Google Scholar 

  • Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 97:10383–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with Prion-Like Amino Acid Composition. Bioinformatics 30:2–3

    Article  CAS  Google Scholar 

  • Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Perchiacca JM, Tessier PM (2013) Toward aggregation-resistant antibodies by design. Trends Biotechnol 31:612–620

    Article  CAS  PubMed  Google Scholar 

  • Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107

    Article  CAS  PubMed  Google Scholar 

  • Lin MM, Mohammed OF, Jas GS, Zewail AH (2011) Speed limit of protein folding evidenced in secondary structure dynamics. Proc Natl Acad Sci 108:16622–16627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SH, Konishi Y, Denton ME, Scheraga HA (1984) Influence of an extrinsic crosslink on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of crosslinked (7-lysine, 41-lysine)-ribonuclease A. Biochemistry 23:5504–5512

    Article  CAS  PubMed  Google Scholar 

  • Linding R, Schymkowitz J, Rousseau F et al (2004) A comparative study of the relationship between protein structure and β-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342:345–353

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Maragakis P, Piana S et al (2012) Systematic validation of protein force fields against experimental data. PLoS ONE 7:e32131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindorff-Larsen K, Røgen P, Paci E et al (2005) Protein folding and the organization of the protein topology universe. Trends Biochem Sci 30:13–19

    Article  CAS  PubMed  Google Scholar 

  • Lobanov MY, Furletova EI, Bogatyreva NS et al (2010) Library of disordered patterns in 3D protein structures. PLoS Comput Biol 6:e1000958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López De La Paz M, Goldie K, Zurdo J et al (2002) De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci USA 99:16052–16057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci 101:87–92

    Article  CAS  PubMed  Google Scholar 

  • Lührs T, Ritter C, Adrian M et al (2005) 3D structure of Alzheimer’s amyloid-beta (1-42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makin OS, Atkins E, Sikorski P et al (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961

    Article  CAS  PubMed  Google Scholar 

  • Matthews BW (1995) Studies on protein stability with T4 lysozyme. Adv Protein Chem 46:249–278

    Article  CAS  PubMed  Google Scholar 

  • Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242

    Article  CAS  PubMed  Google Scholar 

  • Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci 97:11910–11915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minor DL, Kim PS (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380:730–734

    Article  CAS  PubMed  Google Scholar 

  • Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8:737–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsellier E, Ramazzotti M, Taddei N, Chiti F (2008) Aggregation propensity of the human proteome. PLoS Comput Biol 4:e1000199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J 99:3801–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossuto MF, Bolognesi B, Guixer B et al (2011) Disulfide bonds reduce the toxicity of the amyloid fibrils formed by an extracellular protein. Angew Chem Int Ed Engl 50:7048–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munishkina LA, Cooper EM, Uversky VN, Fink AL (2004) The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit 17:456–464

    Article  CAS  PubMed  Google Scholar 

  • Muñoz V, Serrano L (1994) Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales. Proteins 20:301–311

    Article  PubMed  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  • Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki Y, Tanford C (1971) The solubility of amino in aqueous ethanol acids and two glycine dioxane solutions peptides. J Biol Chem 246:2211–2217

    CAS  PubMed  Google Scholar 

  • O’Donnell CW, Waldispühl J, Lis M et al (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27:34–42

    Article  CAS  Google Scholar 

  • Pallarès I, Vendrell J, Avilés FX, Ventura S (2004) Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin. J Mol Biol 342:321–331

    Article  PubMed  CAS  Google Scholar 

  • Papaleo E (2015) Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity. Front Mol Biosci 2:1–6

    Article  CAS  Google Scholar 

  • Parrini C, Taddei N, Ramazzotti M et al (2005) Glycine residues appear to be evolutionarily conserved for their ability to inhibit aggregation. Structure 13:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Pawar AP, Dubay KF, Zurdo J et al (2005) Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 350:379–392

    Article  CAS  PubMed  Google Scholar 

  • Pechmann S, Levy ED, Tartaglia GG, Vendruscolo M (2009) Physicochemical principles that regulate the competition between functional and dysfunctional association of proteins. Proc Natl Acad Sci USA 106:10159–10164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perchiacca JM, Tessier PM (2012) Engineering Aggregation-Resistant Antibodies. Annu Rev Chem Biomol Eng 3:263–286

    Article  CAS  PubMed  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland DC, Scheraga HA (1965) Statistical mechanics of noncovalent bonds in polyamino acids VIII covalent loops proteins. Biopolymers 3:379–399

    Article  CAS  Google Scholar 

  • Radzicka A, Wolfenden R (1988) Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27:1664–1670

    Article  CAS  Google Scholar 

  • Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F (2009a) Protein sequences encode safeguards against aggregation. Hum Mutat 30:431–437

    Article  CAS  PubMed  Google Scholar 

  • Reumers J, Rousseau F, Schymkowitz J (2009b) Multiple evolutionary mechanisms reduce protein aggregation. Open Biol J 2:176–184

    Article  CAS  Google Scholar 

  • Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99:2754–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter C, Maddelein M-L, Siemer AB et al (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: Themes and variations. Curr Opin Struct Biol 10:60–68

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JA, Ivanova MI, Sawaya MR et al (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525(7570):486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseman MA (1988) Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol 200:513–522

    Article  CAS  PubMed  Google Scholar 

  • Rousseau F, Schymkowitz J, Serrano L (2006a) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16:118–126

    Article  CAS  PubMed  Google Scholar 

  • Rousseau F, Serrano L, Schymkowitz JWH (2006b) How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 355:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Rueda M, Ferrer-Costa C, Meyer T et al (2007) A consensus view of protein dynamics. Proc Natl Acad Sci USA 104:796–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabate R, Rousseau F, Schymkowitz J, Ventura S (2015) What makes a protein sequence a prion? PLoS Comput Biol 11:e1004013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saiki M, Konakahara T, Morii H (2006) Interaction-based evaluation of the propensity for amyloid formation with cross-?? structure. Biochem Biophys Res Commun 343:1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Sambashivan S, Liu Y, Sawaya MR et al (2005) Amyloid-like fibrils of ribonuclease a with three-dimensional domain-swapped and native-like structure. Nature 437:266–269

    Article  CAS  PubMed  Google Scholar 

  • Sanchez de Groot N, Torrent M, Villar-Piqué A et al (2012) Evolutionary selection for protein aggregation. Biochem Soc Trans 40:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Santner AA, Croy CH, Vasanwala FH et al (2012) Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression. Biochemistry 51(37):7250–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  PubMed  Google Scholar 

  • Schwartz R, Istrail S, King J (2001) Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Sci 10:1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  CAS  PubMed  Google Scholar 

  • Serrano L, Kellis JT, Cann P et al (1992) The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol 224:783–804

    Article  CAS  PubMed  Google Scholar 

  • Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  • Shimanovich U, Efimov I, Mason TO et al (2014) Protein Microgels from Amyloid Fibril Networks. ACS Nano 9:43–51

    Article  CAS  Google Scholar 

  • Sipe JD, Benson MD, Buxbaum JN et al (2014) Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 21:221–224

    Article  PubMed  Google Scholar 

  • Sormanni P, Aprile FA, Vendruscolo M (2015) The CamSol method of rational design of protein mutants with enhanced solubility. J Mol Biol 427(2):478–490

    Article  CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81:678–699

    Article  CAS  Google Scholar 

  • Steward A, Adhya S, Clarke J (2002) Sequence conservation in Ig-like domains: the role of highly conserved proline residues in the fibronectin type III superfamily. J Mol Biol 318:935–940

    Article  CAS  PubMed  Google Scholar 

  • Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci 13:1939–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2005a) Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 14:2723–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartaglia GG, Cavalli A, Vendruscolo M (2007) Prediction of local structural stabilities of proteins from their amino acid sequences. Structure 15:139–143

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia GG, Pawar AP, Campioni S et al (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380:425–436

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia GG, Pellarin R, Cavalli A, Caflisch A (2005b) Organism complexity anti-correlates with proteomic beta-aggregation propensity. Protein Sci 14:2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia GG, Vendruscolo M (2009) Correlation between mRNA expression levels and protein aggregation propensities in subcellular localisations. Mol BioSyst 5:1873–1876

    Article  CAS  PubMed  Google Scholar 

  • Thangakani AM, Kumar S, Nagarajan R, Velmurugan D, Gromiha MM (2014) GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics 30(14):1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Thangakani A, Kumar S, Velmurugan D, Gromiha M (2013) Distinct position-specific sequence features of hexa-peptides that form amyloid-fibrils: application to discriminate between amyloid fibril and amorphous β-aggregate forming peptide sequences. BMC Bioinformatics 14:S6

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson MJ, Sievers SA, Karanicolas J et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci USA 103(11):4074–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Wu N, Guo J, Fan Y (2009) Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics 10:S45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tokuriki N, Stricher F, Schymkowitz J et al (2007) The stability effects of protein mutations appear to be universally distributed. J Mol Biol 369:1318–1332

    Article  CAS  PubMed  Google Scholar 

  • Tomii K, Kanehisa M (1996) Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 9(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  • Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED (2012) De novo design of synthetic prion domains. Proc Natl Acad Sci 109(17):6519–6524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trovato A, Chiti F, Maritan A, Seno F (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2:e170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of ‘aggregation-prone’peptides in globular proteins. PLoS ONE 8(1):e54175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycko R (2014) Physical and Structural Basis for Polymorphism in Amyloid Fibrils. Protein Sci 00:1–12

    Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycko R, Wickner RB (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 46:1487–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzotzos S, Doig AJ (2010) Amyloidogenic sequences in native protein structures. Protein Sci 19:327–348

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2013a) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22:693–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2013b) The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 587:1891–1901

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  CAS  PubMed  Google Scholar 

  • van den Bedem H, Fraser JS (2015) Integrative, dynamic structural biology at atomic resolution—it’s about time. Nat Methods 12:307–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    Article  PubMed  PubMed Central  Google Scholar 

  • Ventura S, Zurdo J, Narayanan S et al (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci USA 101:7258–7263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villar-Piqué A, Ventura S (2012) Modeling amyloids in bacteria. Microb Cell Fact 11:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17(7):691–695

    Article  CAS  PubMed  Google Scholar 

  • Wall J, Schell M, Murphy C et al (1999) Thermodynamic instability of human λ 6 Light chains: correlation with fibrillogenicity. Biochemistry 38:14101–14108

    Article  CAS  PubMed  Google Scholar 

  • Walsh I, Seno F, Tosatto SCE, Trovato A (2014) PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42:301–307

    Article  CAS  Google Scholar 

  • Wang L, Maji SK, Sawaya MR et al (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6:e195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Schubert D, Sawaya MR et al (2010) Multidimensional structure-activity relationship of a protein in its aggregated states. Angew Chem Int Ed Engl 49:3904–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H et al (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  • West MW, Wang W, Patterson J et al (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci 96:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermark P (2005) Amyloid Proteins. Wiley-VCH Verlag GmbH, Weinheim, Germany

    Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  PubMed  Google Scholar 

  • Wolynes PG (2008) The protein folding energy landscape: a primer. In: Muñoz V (ed) Protein folding, misfolding and aggregation. Royal Society of Chemistry, Cambridge, pp 49–69

    Chapter  Google Scholar 

  • Wood SJ, Wetzel R, Martin JD, Hurle MR (1995) Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide beta/A4. Biochemistry 34:724–730

    Article  CAS  PubMed  Google Scholar 

  • Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438(7069):878–881

    Article  CAS  PubMed  Google Scholar 

  • Wurth C, Guimard NK, Hecht MH (2002) Mutations that reduce aggregation of the Alzheimer’s Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. J Mol Biol 319:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Welsh WJ (2004) Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci 13:2149–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Welsh WJ (2005) Rapid assessment of contact-dependent secondary structure propensity: relevance to amyloidogenic sequences. Proteins 60:110–117

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Welsh WJ, Jung H, Do Yoo Y (2007) CSSP2: an improved method for predicting contact-dependent secondary structure propensity. Comput Biol Chem 31:373–377

    Article  CAS  PubMed  Google Scholar 

  • Zambrano R, Conchillo-Sole O, Iglesias V et al (2015a) PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res 43(W1):W331–W337

    Article  PubMed  PubMed Central  Google Scholar 

  • Zambrano R, Jamroz M, Szczasiuk A et al (2015b) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 8220211:1–8

    Google Scholar 

  • Zhang Z, Chen H, Lai L (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23:2218–2225

    Article  CAS  PubMed  Google Scholar 

  • Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci 16:906–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricardo Graña-Montes or Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Graña-Montes, R., Pujols-Pujol, J., Gómez-Picanyol, C., Ventura, S. (2017). Prediction of Protein Aggregation and Amyloid Formation. In: J. Rigden, D. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1069-3_7

Download citation

Publish with us

Policies and ethics