Skip to main content

Processing of Superconducting and Thermoelectric Bulk Materials Via Laser Technologies

  • Conference paper
  • First Online:
  • 350 Accesses

Abstract

As it is well-known bulk high temperature superconductors are used in technological high power applications, as for instance, superconducting fault current limiters or current leads. Due to their intrinsic granularity and anisotropy issues, the superconducting properties of these materials are strongly determined by current percolation problems. This depends on several factors as the characteristics and properties of individual grains and the quality of the grain boundaries. Thermoelectric (TE) harvesting of wasted heat should play an important role in a sustainable future, due to its simplicity, scalability, and self-sustainability in all kind of applications: remote/attended or mobile/static ones. The development of oxide-based TE materials is important when considering that they are cheaper, and possess lower toxicity than the traditional ones. Moreover, oxides can be used at high temperatures without protecting atmospheres, opening new opportunities for energy recovering TE devices. On the other hand, it is desirable to tune up their TE performances before integration in practical applications. In consequence, in order to obtain bulk materials for the technological applications, it is necessary to develop fabrication techniques controlling the microstructure and shape materials. Recently, in order to fabricate the bulk high temperature superconductors and thermoelectrics with high physical properties, the laser technologies have been widely used. In these techniques, the anisotropy arising from the solidification process permits to aligning the grains within the textured bulk material. For this purpose, superconducting Bi2Sr2-xNaxCaCu2Ox and thermoelectric Bi2Sr2-xNaxCo2Ox samples were prepared and textured using the laser floating zone (LFZ) technique. Microstructural analysis of as-grown samples showed well oriented grains and a relatively high amount of secondary phases due to their incongruent melting. Annealing procedure has drastically decreased the number and amount of secondary phases. Moreover, Na-doping has further decreased the secondary phase content and improved grain alignment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hsu AJ, Chang KS (2019) Physical, photochemical, and extended piezoelectric studies of orthorhombic ZnSnN2 nanocolumn arrays. Appl Surface Sci 470:19

    Article  ADS  Google Scholar 

  2. Li JH, Xu SD, Deng Z, Wei LL, Yang ZP (2019) Photoluminescence and ferroelectric behaviors related to Sr/Ba ratioin Eu3+ doped (Srx Ba1-x)0.98Eu0.02Nb2O6 multifunctional tungsten bronze ceramics. J Alloys Compds 780:355

    Article  Google Scholar 

  3. Bonura M, Barth C, Senatore C (2019) Electrical and thermo-physical properties of Ni-alloy Reinforced Bi-2223 Conductors. IEEE Trans Appl Supercond 29:6400205

    Google Scholar 

  4. Chen C, Delorme F, Schoenstein F, Zaghrioui M, Flahaut D, Allouche J, Giovannelli F (2019) Synthesis, sintering, and thermoelectric properties of Co1-x MxO (M = Na, 0 ≤ x ≤ 0.07; M = Ag, 0 ≤ x ≤ 0.05). J Eur Ceram Soc 39:346

    Article  Google Scholar 

  5. Michel C, Hervieu M, Borel MM, Grandin A, Deslandes F, Provost J, Raveau B (1987) Superconductivity in the Bi-Sr-Cu-O system. Z Phys B 86:421

    Article  ADS  Google Scholar 

  6. Maeda H, Tanaka Y, Fukutumi M, Asano T (1988) A new high-Tc oxide superconductor without a rare-earth element. Jpn J Appl Phys 27:209

    Article  ADS  Google Scholar 

  7. Majewski P, Su HL, Quilitz M (1997) Relationships between the chemical composition and properties of the high-temperature superconductor Bi2+xSr2-yCa1+y Cu2O8+d. J Mater Sci 32:5137

    Article  ADS  Google Scholar 

  8. Chen L, Zhang XY, Qin YJ, Chen HK, Shen Q, Xu Y, Ren L, Tang YJ (2019) Application and design of a resistive-type superconducting fault current limiter for efficient protection of a DC microgrid. IEEE Trans Appl Supercond 29:5600607

    Google Scholar 

  9. Heller R, Bau H, Nagel M, Rummel T (2019) Operation experience of the Wendelstein 7-X high-temperature superconductor current leads. IEEE Trans Appl Supercond 29:4200105

    Google Scholar 

  10. Sotelo A, Rasekh S, Amaveda H, Bosque P, Torres MA, Madre MA, Diez JC (2015) Textured Pb-doped Bi-2212 superconductors for current limiters. J Supercond Nov Magn 28:447

    Article  Google Scholar 

  11. Costa FM, Ferreira NM, Rasekh S, Fernandes AJS, Torres MA, Madre MA, Diez JC, Sotelo A (2015) Very large superconducting currents induced by growth tailoring. Cryst Growth Des 15:2094

    Article  Google Scholar 

  12. Nane O, Özçelik B, Amaveda H, Sotelo A, Madre MA (2016) Improvement of structural and superconducting properties of Bi-2212 textured rods by substituting sodium. Ceram Int 42:8473

    Article  Google Scholar 

  13. Sotelo A, Ozcelik B, Amaveda H, Bruned A, Madre MA (2015) Fabrication and evolution of nanoprecursors to produce Bi(Pb)-2212/Ag textured superconducting Composites. Ceram Int 41:14276

    Article  Google Scholar 

  14. Mahan G, Sales B, Sharp J (1997) Thermoelectric materials: new approaches to an old problem. J Phys Today 50:42

    Article  Google Scholar 

  15. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457

    Article  ADS  Google Scholar 

  16. Naito H, Kohsaka Y, Cooke D, Arashi H (1996) Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system. Sol Energy 58:191

    Article  ADS  Google Scholar 

  17. Kim CM, Hwang YJ, Ryu YH (2002) Air conditioner for individual cooling/heating. US Patent US6393842, May

    Google Scholar 

  18. Elsheikh MH, Shnawah DA, Sabri MFM, Said SBM, Hassan MH, Renew MBABMM (2014) A review on thermoelectric renewable energy: principles parameters that affect their performance. Sust Energ Rev 30:337

    Article  Google Scholar 

  19. Rowe DM (2006) Thermoelectrics handbook: macro to nano, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  20. JM S, Alkorta J, JG S (2013) Mechanical properties of bismuth telluride (Bi2Te3) processed by high pressure torsion (HPT). Bol Soc Esp Ceram V 52:137–142

    Article  Google Scholar 

  21. Wang HC, Bahk JH, Kang C, Hwang J, Kim K, Kim J, Burke P, Bowers JE, Gossard AC, Shakouri A, Kim W (2014) Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectric. P Natl Acad Sci USA 111:10949

    Article  ADS  Google Scholar 

  22. Wang HC, Hwang J, Snedaker ML, Kim I-H, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe Nanocomposite. Chem Mater 27:944

    Article  Google Scholar 

  23. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:12685

    Article  ADS  Google Scholar 

  24. Abdellahi M, Bahmanpour M, Bahmanpour M (2015) Modeling Seebeck coefficient of Ca3-xMxCo4O9 (M=Sr, Pr, Ga, Ca, Ba, La, Ag) thermoelectric ceramics. Ceram Int 41:345

    Article  Google Scholar 

  25. Li F, Li JF, Li JH, Yao FZ (2012) The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Phys Chem Chem Phys 14:12213

    Article  Google Scholar 

  26. Rubesova K, Hlasek T, Jakes V, Huber S, Hejtmanek J, Sedmidubsky D (2015) Effect of a powder compaction process on the thermoelectric properties of Bi2Sr2Co1.8Ox ceramics. J Eur Ceram Soc 35:525

    Article  Google Scholar 

  27. Constantinescu G, Rasekh S, Torres MA, Madre MA, Diez JC, Sotelo A (2013) Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics. Scr Mater 68:75

    Article  Google Scholar 

  28. Wang H, Wang CL (2013) Thermoelectric properties of Yb-doped La0.1 Sr0.9 TiO3 ceramics at high temperature. Ceram Int 39:941

    Article  Google Scholar 

  29. Zhu YH, Su WB, Liu J, Zhou YC, Li J, Zhang X, Du Y, Wang CL (2015) Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceram Int 41:1535

    Article  Google Scholar 

  30. Itahara H, Xia C, Sugiyama J, Tani T (2004) Fabrication of textured thermoelectric layered cobaltites with various rock salt-type layers by using β-Co(OH)2 platelets as reactive templates. J Mater Chem 14:61

    Article  Google Scholar 

  31. Özçelik B, Özkurt B, Yakinci ME, Sotelo A, Madre MA (2013) Relationship between annealing time and magnetic properties in Bi-2212 textured composites. J Supercond Nov Magn 26:873

    Article  Google Scholar 

  32. Özçelik B, Nane O, Sotelo A, Madre MA (2016) Effect of Yttrium substitution on superconductivity in Bi-2212 textured rods prepared by a LFZ technique. Ceram Int 42:3418

    Article  Google Scholar 

  33. Angurel LA, Díez JC, de la Fuente GF, Gimeno F, Lera F, López-Gascón C, Martínez E, Mora M, Navarro R, Sotelo A, Andrés N, Recuero S, Arroyo MP (2006) Laser technologies applied to the fabrication and characterization of bulk Bi-2212 superconducting materials for power applications. Phys Stat Sol A 203:2931

    Article  ADS  Google Scholar 

  34. Sotelo A, Mora M, Madre MA, Amaveda H, Diez JC, Angurel LA, Mayoral MC (2006) Study of the variation of the E-I curves in the superconducting to normal transition of Bi-2212 textured ceramics by Pb addition. Bol Soc Esp Ceram 45:228

    Article  Google Scholar 

  35. Özçelik B, Gürsul M, Sotelo A, Madre MA (2014) Effect of K substitution on structural, electrical and magnetic properties of Bi-2212 system. J Mater Sci Mater Electron 25:4476

    Article  Google Scholar 

  36. Eisaki H, Kaneko N, Feng DL, Damascelli A, Mang PK, Shen KM, Shen ZX, Greven M (2004) Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys Rev B 69:064512

    Article  ADS  Google Scholar 

  37. Özkurt B, Ekicibil A, Ali Aksan M, Özçelik B, Yakıncı ME, Kiymaç K (2007) Structural and Physical Properties of Nd substituted bismuth cuprates Bi1.7Pb0.3-x NdxSr2Ca3Cu4O12+y. J Low Temp Phys 149:105

    Article  ADS  Google Scholar 

  38. Bean CP (1962) Magnetization of hard superconductors. Phys Rev Lett 8:250

    Article  ADS  MATH  Google Scholar 

  39. Sotelo A, Torres MA, Constantinescu G, Rasekh S, Diez JC, Madre MA (2012) Effect of Ag addition on the mechanical and thermoelectric performances of annealed Bi2Sr2Co1.8Ox textured ceramics. J Eur Ceram Soc 32:3745

    Article  Google Scholar 

  40. Mercurio D, Champarnaud-Mesjard JC, Frit B, Conflant P, Boivin JC, Vogt T (1994) Thermal evolution of the crystal structure of the rhombohedral Bi0.75Sr0.25 O1.375 phase: a single crystal neutron diffraction study. J Solid State Chem 112(1):1–8

    Article  ADS  Google Scholar 

  41. Costa FM, Ferreira NM, Rasekh S, Fernandes AJS, Torres MA, Madre MA, Diez JC, Sotelo A (2015) Very large superconducting currents induced by growth tailoring. Cryst Growth Des 15:2094

    Article  Google Scholar 

  42. Rasekh S, Ferreira NM, Costa FM, Constantinescu G, Madre MA, Torres MA, Diez JC, Sotelo A (2014) Development of a new thermoelectric Bi2Ca2Co1.7Ox + Ca3Co4O9 composite. Scr Mater 80:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Özçelik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Özçelik, B., Çetin, G., Gürsul, M., Torres, M.A., Madre, M.A., Sotelo, A. (2020). Processing of Superconducting and Thermoelectric Bulk Materials Via Laser Technologies. In: Sidorenko, A., Hahn, H. (eds) Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1909-2_21

Download citation

Publish with us

Policies and ethics