Skip to main content

Crystal-Plasticity Simulation of Micromachining of Single-Crystal Metal: Methodology and Analysis

  • Chapter
  • First Online:
Advanced Methods of Continuum Mechanics for Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 60))

Abstract

A crystal-plasticity modelling framework was implemented to simulate micromachining of a single-crystal metal. A new shear strain-based criterion was proposed to control material removal. This criterion was implemented in three different modelling techniques: element deletion, arbitrary Lagrangian–Eulerian (ALE) adaptive remeshing and smooth particle hydrodynamics (SPH) in a general-purpose finite-element software package ABAQUS. The three different modelling approaches were compared in terms of their computational accuracy and efficiency. Based on these studies, an optimized modelling strategy was proposed to simulate microscratching of single-crystal copper. The validity of the suggested methodology was corroborated through comparison between FE simulations and experimental data in terms of cutting forces, chip morphology and pile-up patterns in the work-piece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amini, S., Soleimanimehr, H., Nategh, M., Abudollah, A., Sadeghi, M.: FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. J. Mater. Process. Technol. 201(1), 43–47 (2008)

    Article  Google Scholar 

  • Arısoy, Y.M., Özel, T.: Prediction of machining induced microstructure in Ti-6Al-4V alloy using 3-D FE-based simulations: effects of tool micro-geometry, coating and cutting conditions. J. Mater. Process. Technol. 220, 1–26 (2015)

    Article  Google Scholar 

  • Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50(4b), 921–934 (1983)

    Article  MATH  Google Scholar 

  • Babitsky, V., Mitrofanov, A., Silberschmidt, V.: Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42(1), 81–86 (2004)

    Article  Google Scholar 

  • Buchkremer, S., Wu, B., Lung, D., Münstermann, S., Klocke, F., Bleck, W.: FE-simulation of machining processes with a new material model. J. Mater. Process. Technol. 214(3), 599–611 (2014)

    Article  Google Scholar 

  • Demiral, M., Roy, A., El Sayed, T., Silberschmidt, V.V.: Numerical modelling of micro-machining of f.c.c single crystal: influence of strain gradients. Comput. Mater. Sci. 94, 273–278 (2014)

    Article  Google Scholar 

  • Elhami, S., Razfar, M., Farahnakian, M.: Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140. Int. J. Mech. Sci. 103, 158–171 (2015)

    Article  Google Scholar 

  • Engel, U., Eckstein, R.: Microforming-from basic research to its realization. J. Mater. Process. Technol. 125, 35–44 (2002)

    Article  Google Scholar 

  • Greer, J.R., De Hosson, J.T.M.: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654–724 (2011)

    Article  Google Scholar 

  • Hibbitt, D., Karlsson, B., Sorensen, P.: Abaqus 6.12. 3 manual. Abaqus 612 3 Manual (2012)

    Google Scholar 

  • Hokka, M., Leemet, T., Shrot, A., Baeker, M., Kuokkala, V.T.: Characterization and numerical modeling of high strain rate mechanical behavior of Ti-15-3 alloy for machining simulations. Mater. Sci. Eng.: A 550, 350–357 (2012)

    Article  Google Scholar 

  • Huang, Y.: A user-material subroutine incroporating single crystal plasticity in the ABAQUS finite element program. Harvard University (1991)

    Google Scholar 

  • Hughes, T.J., Winget, J.: Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int. J. Numer. Methods Eng. 15(12), 1862–1867 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Hutchinson, J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A: Math., Phys. Eng. Sci., R. Soc. 348, 101–127 (1976)

    Article  MATH  Google Scholar 

  • Jafarian, F., Ciaran, M.I., Umbrello, D., Arrazola, P., Filice, L., Amirabadi, H.: Finite element simulation of machining Inconel 718 alloy including microstructure changes. Int. J. Mech. Sci. 88, 110–121 (2014)

    Article  Google Scholar 

  • Jin, X., Altintas, Y.: Prediction of micro-milling forces with finite element method. J. Mater. Process. Technol. 212(3), 542–552 (2012)

    Article  Google Scholar 

  • Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  • Kim, J.B., Yoon, J.W.: Necking behavior of AA 6022–T4 based on the crystal plasticity and damage models. Int. J. Plast. 73, 3–23 (2015)

    Article  Google Scholar 

  • Kraft, O., Gruber, P.A., Mönig, R., Weygand, D.: Plasticity in confined dimensions. Ann. Rev. Mater. Res. 40, 293–317 (2010)

    Article  Google Scholar 

  • Lee, W., To, S., Cheung, C.: Effect of crystallographic orientation in diamond turning of copper single crystals. Scripta Materialia 42(10), 937–945 (2000)

    Article  Google Scholar 

  • Liu, K., Melkote, S.N.: Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int. J. Mech. Sci. 49(5), 650–660 (2007)

    Article  Google Scholar 

  • Mian, A., Driver, N., Mativenga, P.: Identification of factors that dominate size effect in micro-machining. Int. J. Mach. Tools Manuf. 51(5), 383–394 (2011)

    Article  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, D., Stucker, B.: A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J. Appl. Phys. 113(20), 203517 (2013)

    Article  Google Scholar 

  • Parle, D., Singh, R.K., Joshi, S.S., Ravikumar, G.: Modeling of microcrack formation in orthogonal machining. Int. J. Mach. Tools Manuf. 80, 18–29 (2014)

    Article  Google Scholar 

  • Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Materialia 58(4), 1152–1211 (2010)

    Article  Google Scholar 

  • Shi, B., Attia, H.: Current status and future direction in the numerical modeling and simulation of machining processes: a critical literature review. Mach. Sci. Technol. 14(2), 149–188 (2010)

    Article  Google Scholar 

  • Tajalli, S., Movahhedy, M., Akbari, J.: Simulation of orthogonal micro-cutting of FCC materials based on rate-dependent crystal plasticity finite element model. Comput. Mater. Sci. 86, 79–87 (2014)

    Article  Google Scholar 

  • Takeuchi, T.: Work hardening of copper single crystals with multiple glide orientations. Trans. Jpn. Inst. Met. 16(10), 629–640 (1975)

    Article  Google Scholar 

  • Zahedi, S.A., Demiral, M., Roy, A., Silberschmidt, V.V.: FE/SPH modelling of orthogonal micro-machining of f.c.c single crystal. Comput. Mater. Sci. 78, 104–109 (2013)

    Article  Google Scholar 

  • Zahedi, S.A., Roy, A., Silberschmidt, V.V.: Modelling of vibration assisted machining f.c.c single crystal. Procedia CIRP 31, 393–398 (2015)

    Article  Google Scholar 

  • Zhang, H., Dong, X.: Physically based crystal plasticity FEM including geometrically necessary dislocations: numerical implementation and applications in micro-forming. Comput. Mater. Sci. 110, 308–320 (2015)

    Article  Google Scholar 

  • Zhang, Y., Mabrouki, T., Nelias, D., Courbon, C., Rech, J., Gong, Y.: Cutting simulation capabilities based on crystal plasticity theory and discrete cohesive elements. J. Mater. Process. Technol. 212(4), 936–953 (2012)

    Article  Google Scholar 

  • Zhang, Y., Outeiro, J., Mabrouki, T.: On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP 31, 112–117 (2015)

    Article  Google Scholar 

  • Zong, W., Cao, Z., He, C., Xue, C.: Theoretical modelling and FE simulation on the oblique diamond turning of ZnS crystal. Int. J. Mach. Tools Manuf. 100, 55–71 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

Funding from the Engineering and Physical Sciences Research Council (UK) through grant EP/K028316/1 and Department of Science and Technology (India), project MAST, is gratefully acknowledged. The authors are grateful to Prof. Takashi Matsumura and Dr. Shoichi Tamura (Japan) for experimental results on microscratching of single-crystal copper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Liu, Q., Dodla, S., Roy, A., Silberschmidt, V.V. (2016). Crystal-Plasticity Simulation of Micromachining of Single-Crystal Metal: Methodology and Analysis. In: Naumenko, K., Aßmus, M. (eds) Advanced Methods of Continuum Mechanics for Materials and Structures. Advanced Structured Materials, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-0959-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0959-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0958-7

  • Online ISBN: 978-981-10-0959-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics