Skip to main content

River Basin Impact Assessment of Changing Land Use and Climate by Applying the ILWRM Approach in Africa and Asia

  • Chapter
  • First Online:
  • 1359 Accesses

Abstract

Methodological aspects of scale-related impact assessment from changing land use/land cover (LULC) management and climate on river basin water resources and their management are discussed. Both control the interactive hydrological process dynamics that transfer precipitation input on the landscape to the different surface and subsurface water resources components and ultimately to river runoff draining the river basin. As the integrated water resources management (IWRM) concept does not sufficiently account for the landscape-related process dynamics associated with LULC management, it is enhanced to the integrated land and water resources management (ILWRM) approach. The latter requires, firstly, a consistent methodological concept and, secondly, a toolset for its implementation. The DPSIR (D = Drivers, P = Pressures, S = State, I = Impacts, R = Responses) approach is a suitable analysis concept in this regard and is enhanced by a Decision Information Knowledge System (DIKS). Both are implemented by means of the integrated land management system (ILMS) toolset developed at the University of Jena, Germany, and tested in numerous research projects in Africa, Asia, Australia, Europe and South America. The majority of river catchment studies focus on a particular scale. Upscaling and downscaling of the hydrological knowledge they generate requires the separation of the generic knowledge components from their modifying local specifications. The interdisciplinary ILWRM applications presented in this paper from two projects in South Africa and SE Asia address this challenge by applying a multi-scale nested catchment approach (NCA) and respective upscaling and downscaling techniques to regionalize hydrological knowledge between scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CC:

Climate change

CLM:

Community land model

DEM:

Digital elevation model

DIKS:

Decision Information Knowledge System

DPSIR:

Driver, pressure, state, impact, response

EC:

European Commission

ECMWF:

European Centre for Medium-Range Weather Forecast

EEA:

European Environment Agency

ERA-40:

ECMWF reanalysis of the global atmosphere and surface conditions for 45 years

ESF:

Ecosystem functions

ESS:

Ecosystem services

GCM:

General circulation model

GIS:

Geographic information system

GLOF:

Glacier lake outburst flood

GWP:

Global Water Partnership

HD:

Human dimension

HRU:

Hydrological response units

ISA:

Integrated system analysis

ILMS:

Integrated land management system

IPCC:

Intergovernmental Panel on Climate Change

IPM:

Integrated process modelling

IWRM:

Integrated water resources management

ILWRM:

Integrated land and water resources management

JAMS:

Jena Adaptable Modelling System

LULC:

Land use/land cover

MFS:

Modelling framework system

MODIS:

Moderate-resolution imaging spectroradiometer

NCA:

Nested catchment approach

NE:

Natural environment

RBIS:

River basin information system

RCM:

Regional climate model

RS:

Remote sensing

SRES:

Special report on emission scenarios

UBRB:

Upper Brahmaputra River basin

UDRB:

Upper Danube river basin

USGS:

United States Geological Survey

WAM:

Water allocation model

WL:

Wetlands

WRRU:

Water resources response units

References

  • Ahrens B (2003) Rainfall downscaling in an Alpine watershed applying a multiresolution approach. J Geophys Res 108:D88388. doi:10.1029/2001JD001485

    Article  Google Scholar 

  • Alcamo J, Henrichs T (2002) Critical regions, a model-based estimation of world water resources sensitive to global changes. Aquat Sci 64:352–362

    Article  Google Scholar 

  • Bende-Michl U, Kemnitz D, Helmschrot J, Krause P, Cresswell H, Kralisch S, Fink M, Flügel W-A (2007) Supporting natural resources management in Tasmania through spatially distributed solute modeling with JAMS/J2000-S. In: Kulasiri D, Oxley L (eds) MODSIM 2007 International congress on modelling and simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007: 2354–2360, ISBN: 978-0-9758400-4-7

    Google Scholar 

  • Bossa AY, Diekkrüger B, Agbossou EK (2015) Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water 6:3152–3181. doi:10.3390/w6103152

  • Calder IR (2005) Integrated land and water resources management. In: Anderson MG (ed) Encyclopedia of hydrological sciences, vol 16. Wiley, Chichester, pp 1–15

    Google Scholar 

  • Dahlke H, Helmschrot J, Behrens T (2005) A GIS-based terrain analysis approach for inventory of wetland in the semi-arid headwaters of the Umzimvubu basin, South Africa. Göttinger Geogr Abh 113:78–86

    Google Scholar 

  • DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18:2183–2186

    Article  Google Scholar 

  • Dobler A, Yaoming M, Sharma N, Kienberger S, Ahrens B (2011) Regional climate projections in two alpine river basins: upper Danube and Upper Brahmaputra. Adv Sci Res 7:11–20

    Article  Google Scholar 

  • EC, European Commission (2000) Directive 2000/60/EC of the European Parliament and the Council, Official Journal of the European Communities, Brussels, L327/1-L327/72

    Google Scholar 

  • EEA, European Environmental Agency (1999) Environmental indicators: typology and overview, European Environmental Agency, EEA, Copenhagen, Technical Report No. 25, p 19

    Google Scholar 

  • EEA, European Environmental Agency (2005) Agriculture and environment in EU-15 – the IRENA indicator report. European Environmental Agency, EEA, Copenhagen, Report No. 4: p 128

    Google Scholar 

  • EEA, European Environmental Agency (2008a) Modelling environmental change in Europe: towards a model inventory (SEIS/Forward). European Environmental Agency, EEA, Copenhagen, Technical Report, No. 11: p 69

    Google Scholar 

  • EEA, European Environmental Agency (2008b) Impacts of Europe’s changing climate – 2008 indicator-based assessment. European Environmental Agency, EEA, Copenhagen, Report No. 4: p 246

    Google Scholar 

  • Exler N, Wagner I, Janauer GA (2015) Wetlands and their dynamics. In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 31–35. doi:10.1007/978-81-322-1967-5_6

    Google Scholar 

  • Fink M, Beisecker R, Kralisch S, Mauden R (2007a) Strategien zur Reduktion des diffusen Stickstoffaustrages aus landwirtschaftlich genutzten Flächen. Forum Hydrol Wasserbewirtsch 1(20.07):63–69

    Google Scholar 

  • Fink M, Krause P, Kralisch S, Bende-Michl U, Flügel W-A (2007b) Development and application of the modelling system J2000-S for the EU-water framework directive. Adv Geosci 11:123–130

    Article  Google Scholar 

  • Fink M, Fischer C, Führer N, Firoz AMB, Viet TQ, Laux P, Flügel W-A (2013) Distributive hydrological modelling of a monsoon dominated river system in central Vietnam. In: Piantadosi J, Anderssen, RS, Boland J (eds) MODSIM2013, 20th International congress on modelling and simulation. Modelling and Simulation Society of Australia and New Zealand, December 2013: 1826–1832. ISBN: 978-0-9872143-3-1

    Google Scholar 

  • Fischer G, Shah M, van Velthuizen H (2002) Climate change and vulnerability. International Institute for Applied Systems Analyis, IIASA, Laxenburg, Austria, p 152

    Google Scholar 

  • Flügel W-A (1993) River salination due to non-point contribution of irrigation return flow in the Breede River, Western Cape Province, South Africa. Water Sci Technol 28:193–197

    Google Scholar 

  • Flügel W-A (1995a) Delineating hydrological response units by geographic information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Bröl, Germany. Hydrol Process 9:423–436

    Article  Google Scholar 

  • Flügel W-A (1995b) River salination due to dryland agriculture in the Western Cape Province, Republic of South Africa. Environ Int 21(5):679–686

    Article  Google Scholar 

  • Flügel W-A (1996) Hydrological Response Units (HRU) as modelling entities for hydrological river basin simulation and their methodological potential for modelling complex environmental process systems Results from the Sieg catchment. DIE ERDE 127:42–62

    Google Scholar 

  • Flügel W-A (2000) Systembezogene Entwicklung regionaler hydrologischer. Modellsysteme Wasser Boden 52(3):14–17

    Google Scholar 

  • Flügel W-A (2010) Climate impact analysis for IWRM in Man-made landscapes: applications for Geoinformatics in Africa and Europe. Initiativen Umweltschutz 79:101–134

    Google Scholar 

  • Flügel W-A (2011a) Development of adaptive IWRM options for climate change mitigation and adaptation. Advances in Science & Research 7:91–100. doi:10.5194/asr-7-1-2011, http://www.adv-sci-res.net/7/index.html

    Article  Google Scholar 

  • Flügel W-A (2011b) Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches – results from the EC-project BRAHMATWINN. Advances in Science & Research 7:1–9. doi:10.5194/asr-7-1-2011, http://www.adv-sci-res.net/7/index.html

    Article  Google Scholar 

  • Flügel W-A (2011c) Geoinformatics for comprehensive impact assessment and analysis of climate change for integrated water resources management. In: Joshi PK, Singh TP (eds) Geoinformatics for climate change studies. TERI Press, p 492, chapter 6, ISBN 9788179934098

    Google Scholar 

  • Flügel W-A, Bartosch A (2011) Analysis of present IWRM in the Upper Brahmaputra and the Upper Danube River Basins. Adv Sci Res 7:21–36

    Article  Google Scholar 

  • Flügel W-A, Busch C (2011) Development and implementation of an integrated water resources management system (IWRMS). Adv Sci Res 7:83–90

    Article  Google Scholar 

  • Flügel W-A, Märker M (2003) The response units concept and its application for the assessment of hydrological related erosion processes in catchments of Southern Africa. ASTM STP 1420:163–177

    Google Scholar 

  • Flügel W-A, Busch C, Sharma N (2015a) Integrated land and water resources management system (ILWRMS). In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 67–70. doi:10.1007/978-81-322-1967-5_6

    Google Scholar 

  • Flügel W-A, Pechstädt J, Flemming A (2015b) Applying the Response Units (RU) Concept for ILWRM. In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River Basin – results from the EC-project BRAHMATWINN. Springer, India, p 45–52. ISBN 978-81-322-1966-8

    Google Scholar 

  • Giannini V, Giupponi C (2011) Integration by identification of indicators. Adv Sci Res 7:55–60

    Article  Google Scholar 

  • Giannini V, Ceccato L, Hutton CW, Allan AA, Kienberger S, Flügel W-A, Giupponi C (2011) Development of responses based on IPCC and “what-if?” IWRM scenarios. Adv Sci Res 7:71–81

    Article  Google Scholar 

  • Giannini V, Allan A, Hutton CW, Giupponi C (2015) Adaptive IWRM responses to cope with “What-If?” scenarios. In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 61–66. doi:10.1007/978-81-322-1967-5_6

    Google Scholar 

  • Gordon TJ, Pease A (2006) RT Delphi: an efficient, “Round-less”, almost real time Delphi method. J Technol Forecast Soc Chang 73(4):321–333

    Article  Google Scholar 

  • GWP-TAC (2000) Integrated water resources management. TAC Background Paper, No. 4: p 67

    Google Scholar 

  • GWP-TEC, Global Water Partnership – Technical Committee (2004) “…Integrated Water Resources Management (IWRM) and Water Efficiency Plans by 2005” why, what and how? TEC Background Paper, No. 10: p 45

    Google Scholar 

  • Heathcote IW (1998) Integrated watershed management. Wiley, New York, p 414

    Google Scholar 

  • Helmschrot J (2006a) An integrated, landscape-based approach to model the formation and hydrological functioning of wetlands in semiarid headwater catchments of the Umzimvubu River, South Africa. Sierke Verlag, Göttingen, p 314. ISBN 3-933893-75-5

    Google Scholar 

  • Helmschrot J (2006b) Assessment of temporal and spatial effects of landuse changes on wetland hydrology: a case study from South Africa. In: Kotowski W, Maltby E, Miroslaw–Swiatek D, Okruszko T, Szatylowicz J (eds) Modelling, monitoring, management, in wetlands. Taylor & Francis/A.A. Balkema Publisher, London/Dordrecht, pp 197–204

    Google Scholar 

  • Helmschrot J, Flügel W-A (2002) Land use characterization and change detection analysis for hydrological model parameterisation of large scale afforested areas using remote sensing. Phys Chem Earth 27:711–718

    Article  Google Scholar 

  • Hoffmann T, Thorndycraft VR, Brown AG, Coulthard TJ, Damnati B, Kale VS, Middelkoop H, Notebaert B, Walling DE (2011) Human impact on fluvial regimes and sediment flux during the Holocene: review and future research agenda. Glob Planet Chang 72:87–98

    Article  Google Scholar 

  • Hutton CW, Kienberger S, Johnson FA, Allan A, Giannini V, Allen R (2011) Vulnerability to climate change: people, place and exposure to hazard. AVR 7:37–45

    Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change (2000) Emissions scenarios. A special Report of IPCC Working Group III, p 27

    Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change (2007a) Climate Change (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  • IPCC, Intergovernmental Panel on Climate Change (2007b) Climate Change 2007, Impacts, adaption and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. http://www.ipcc.ch/ipccreports/ar4-wg2.htm

  • IPCC, Intergovernmental Panel on Climate Change (2007c) Climate Change 2007, Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the IPCC. http://www.ipcc.ch/ipccreports/ar4-wg3.htm

  • IUCN (2003) Change. Adaptation of water management to climate change. IUCN, Gland, p 53

    Google Scholar 

  • Jain SK, Singh VP (2003) Water resources system planning and management. Elsevier, Amsterdam, p 858

    Google Scholar 

  • Kääb A, Frauenfelder R, Sossna I (2015) Glacier changes and permafrost distribution. In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 25–30. doi:10.1007/978-81-322-1967-5_6

    Google Scholar 

  • Kienberger S, Hutton CW, Johnson FA (2015) Vulnerability assessment and scenarios. In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 53–59. doi:10.1007/978-81-322-1967-5_6

    Google Scholar 

  • Klein J, Frei C, Gurtz J, Lüthi D, Vidale PL, Schär C (2005) Hydrologic simulations in the Rhine basin driven by a regional climate model. J Geophys Res 110:D04102. doi:10.1029/2004JD005143

    Article  Google Scholar 

  • Kralisch S, Fischer C (2012) Model representation, parameter calibration and parallel computing – the JAMS approach. In: Seppelt R, Voinov AA, Lange S, D. Bankamp D (eds) Proceedings of the international congress on environmental modelling and software, Sixth Biennial Meeting. Leipzig. http://www.iemss.org/iemss2012/proceedings/D3_1_0802_Kralisch_Fischer.pdf

  • Kralisch S, Krause P (2007) JAMS – a framework for natural resource model development and application. In: Voinov A, Jakeman A, Rizzoli AE (eds) Proceedings of the iEMSs third biannual meeting “Summit on Environmental Modelling and Software”, Burlington, USA, July 2006. Int. Env. Modelling and Software Society

    Google Scholar 

  • Kralisch S, Fink M, Flügel W-A, Beckstein C (2003) A neural network approach for the optimization of watershed management. Environ Model Softw 18(8–9):15–23

    Google Scholar 

  • Kralisch S, Fink M, Beckstein C (2005) Neural network based sensitivity analysis of natural resource models. In: Zerger A, Argent RM (eds) Proceedings MODSIM 2005, December 2005: 2498–2504

    Google Scholar 

  • Kralisch S, Krause P, Fink M, Fischer C, Flügel W-A (2007) Component based environmental modelling using the JAMS framework. In: Kulasiri D, Oxley L (eds) Proceedings of the MODSIM 2007 international congress on modelling and simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007

    Google Scholar 

  • Kralisch S, Böhm B, Böhm C, Busch C, Fink M, Fischer C, Schwartze C, Selsam P, Zander F, Flügel W-A (2012) ILMS – a software platform for integrated water resources management. In: Seppelt R, Voinov AA, Lange S, D. Bankamp D (eds) Proceedings of the international congress on environmental modelling and software, Sixth Biennial Meeting. Leipzig. http://www.iemss.org/iemss2012/proceedings/I2_2_0734_Kralisch_et_al.pdf

  • Kralisch S, Zander F, Flügel W-A (2013) OBIS – a data and information management system for the Okavango Basin. In: Oldeland J, Erb C, Finckh M, Jürgens N (eds) Biodiversity and ecology, 5: 213–220. doi:10.7809/b-e.00276

  • Krause P (2002) Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Phys Chem Earth 27:663–673

    Article  Google Scholar 

  • Krause P, Flügel W-A (2005) Model integration and development of modular modelling systems. Adv Geosci 4:1–2

    Article  Google Scholar 

  • Krause P, Hanisch S (2009) Simulation and analysis of the impact of projected climate change on the spatially distributed water balance in Thuringia, Germany. Adv Geosci 7:1–16

    Google Scholar 

  • Krause P, Bende-Michl U, Bäse F, Fink M, Flügel W-A, Pfennig B (2006) Investigations in a Mesoscale Catchment. – Hydrological modelling in the Gera Catchment. Adv Geosci 9:53–61

    Article  Google Scholar 

  • Krause S, Bronstert A, Zehe E (2007) Groundwater–surface water interactions in a North German lowland floodplain–implications for the river discharge dynamics and riparian water balance. J Hydrol 347(3):404–417

    Google Scholar 

  • Kumar KR, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamaka K, Pant CB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90(3):334–345

    Google Scholar 

  • Künne A, Fink M, Kipka H, Krause P, Flügel W-A (2012) Regionalization of meso-scale physically based nitrogen modelling outputs to the macro-scale by the use of regression trees. Adv Geosci 31:15–21

    Article  Google Scholar 

  • Lang S, Kääb A, Pechstädt J, Flügel W-A, Zeil P, Lanz E, Kahuda D, Frauenfelder R, Casey K, Füreder P, Sossna I, Wagner I, Janauer G, Exler N, Boukalova Z, Tapa R, Lui J, Sharma N (2011) Assessing components of the natural environment of the Upper Danube and Upper Brahmaputra river basins. Adv Sci Res 7:21–36

    Article  Google Scholar 

  • Marke T (2008) Development and application of a model interface to couple regional climate models with land surface models for climate change risk assessment in the Upper Danube Watershed. Dissertation LMU München: Fakultät für Geowissenschaften, Digitale Hochschulschriften der LMU München: p 188, http://edoc.ub.uni-muenchen.de/9162

  • Mustafa YM, Amin MSM, Lee TS, Shariff ARM (2005) Evaluation of land development impact on a tropical watershed hydrology using remote sensing and GIS. J Spat Hydrol 5(2):16–30, Fall

    Google Scholar 

  • Nejadhashemi AP, Wardynski BJ, Munoz JD (2011) Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrol Earth Syst Sci Discuss 8:3421–3468

    Article  Google Scholar 

  • Nepal S, Krause P, Flügel W-A, Fink M, Fischer C (2014) Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol Process 28(3):1329–1344. doi:10.1002/hyp.9627

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE, Dai A, Decker M, Dickinson R, Feddema J, Heald CL, Hoffman F, Lamarque J-F, Mahowald N, Niu G-Y, Qian T, Randerson J, Running S, Sakaguchi K, Slater A, Stockli R, Wang A, Yang Z-L, Zeng X, Zeng X (2010) Technical description of version 4.0 of the Community Land Model (CLM). NCAR technical note NCAR/TN-478+STR. National Center for Atmospheric Research, Boulder, p 257

    Google Scholar 

  • Pfennig B, Kipka H, Wolf M, Fink M, Krausem P, Flügel W-A (2009) Development of an extended spatially distributed routing scheme and its impact on process oriented hydrological modelling results. IAHS Publ 333:37–43

    Google Scholar 

  • Prasch M (2010) Distributed process oriented modelling of the future impact of glacier melt water on runoff in the Lhasa River Basin in Tibet. Dissertation, LMU München: Fakultät für Geowissenschaften, Digitale Hochschulschriften der LMU München. p 206, http://edoc.ub.uni-muenchen.de/13031/

  • Prasch M, Marke T, Strasser U, Mauser W (2011) Large scale integrated hydrological modelling of the impact of climate change on the water balance with DANUBIA. Adv Sci Res 7:61–70

    Article  Google Scholar 

  • Prasch M, Marke T, Strasser U, Mauser W (2015) Large scale distributed hydrological modelling. In: Sharma N, Flügel W-A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 37–43. doi:10.1007/978-81-322-1967-5_8

    Google Scholar 

  • Querner EP (2002) Analysis of basin response resulting from climate change and mitigation measures. IAHS Publ 274:77–84

    Google Scholar 

  • Rahmann MM, Varis O, Kajander T (2004) EU water framework directive vs. integrated water resources management: the seven mismatches. Water Resour Dev 20(4):565–575

    Article  Google Scholar 

  • Schmidli J, Frei C (2005) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(3):679–689

    Google Scholar 

  • Seidel K, Martinec J (2002) NOAA/AVHRR monitoring of snow cover for modelling climate-affected runoff in Ganges and Brahmaputra Rivers. Proc. of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space, Bern, March 11–13:188–200

    Google Scholar 

  • Sharma N, Flügel W-A (eds) (2015) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, p 70. doi:10.1007/978-81-322-1967-5_3

    Google Scholar 

  • Steudel T, Bugan R, Kipka H, Pfennig B, Fink M, de Clercq W, Flügel W-A, Helmschrot J (2013) Implementing contour bank farming practices into the J2000 model to improve hydrological and erosion modelling in semi-arid Western Cape Province of South Africa. Hydrol Res 46(2):192–211. doi:10.2166/nh.2013.164

    Article  Google Scholar 

  • Subba B (2001) Himalayan waters. The Panos Institute, South Asia, 286 p

    Google Scholar 

  • Thanapakpawin P, Richey J, Thomas D, Rodda S, Campbell B, Logsdon M (2006) Effects of land use change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. J Hydrol 334:215–230

    Article  Google Scholar 

  • Thapa R, Lang S, Schöpfer E, Kienberger S, Füreder P, Zeil P (2015) Land use/land cover classification of the natural environment. In: Sharma N, Flügel W_A (eds) Applied geoinformatics for sustainable integrated land and water resources management (ILWRM) in the Brahmaputra River basin. Springer, New Delhi, pp 17–23. doi:10.1007/978-81-322-1967-5_6

    Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa B, Fiorini M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Jansen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morgrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevici D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qi.04.176

    Article  Google Scholar 

  • van Roosmalen L, Sonnenborg TO, Jensen KH (2009) Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resour Res 45(W00A15):18. doi:10.1029/2007WR006760

    Google Scholar 

  • Wallace JS, Gregory JP (2002) Water resources and their use in food production systems. Aquat Sci 64:363–375

    Article  Google Scholar 

  • Wijesekaraa GN, Guptab A, Valeoc C, Hasbanid JG, Marceaue DJ (2010) Impact of land-use changes on the hydrological processes in the Elbow river watershed in southern Alberta. In: Yang DA, Voinov W, Rizzoli AA, Filatova T (eds) International environmental modelling and software society (iEMSs), 2010 International congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada, Swayne. http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the intergovernmental panel on climate change, p 27. http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf

  • Zander F, Kralisch S, Flügel W-A (2013) Data and information management for integrated research – requirements, experiences and solutions. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. Adelaide: 2201–2206. http://www.mssanz.org.au/modsim2013/K5/zander.pdf

Download references

Acknowledgement

The author acknowledges the financial funding and logistic support received from the European Commission (EC), the German Research Association (DFG), the German Federal Ministry of Education and Research (BMBF), the Volkswagen Association (VW-Stiftung), Mondi Forest Ltd. South Africa and the Deutsche Stifterverband for the research projects presented from South Africa and SE Asia. The support from the research team at the Department of Geoinformatics, Hydrology and Modelling (DGHM) at the Friedrich-Schiller University of Jena in Germany and my cooperating colleagues in the respective research projects is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang-Albert Flügel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Flügel, WA. (2017). River Basin Impact Assessment of Changing Land Use and Climate by Applying the ILWRM Approach in Africa and Asia. In: Sharma, N. (eds) River System Analysis and Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-1472-7_6

Download citation

Publish with us

Policies and ethics