Skip to main content

Therapeutic Potential of Skeletal Muscle Plasticity and Slow Muscle Programming for Muscular Dystrophy and Related Muscle Conditions

  • Chapter
  • First Online:

Abstract

Duchenne muscular dystrophy (DMD) is a devastating life-limiting disease causing progressive and severe muscle wasting in boys and young men. It is simply unacceptable that ∼30 years after the discovery of the culprit protein, dystrophin, there is still no cure or effective treatment. Dystrophic muscles are fragile, injury prone and compromised in their regenerative capacity. Interestingly, in DMD and in two well-characterised murine models of the disease (mdx and dko mice), fast muscle fibres are more susceptible to damage and pathological progression than slow muscle fibres, which are resistant to damage and relatively spared. Therefore, therapies that promote a slower, more oxidative phenotype could protect muscles from damage, ameliorate the dystrophic pathology and improve patient quality of life. Muscle plasticity can be achieved through exercise and/or well-described pharmacologic approaches, including activation of AMP-activated protein kinase (AMPK). Exercise has beneficial effects on muscle health, but unfortunately many patients cannot exercise, especially DMD patients confined to wheelchairs. Modulating muscle activity through low-frequency stimulation (LFS) protocols could mimic exercise to promote a slow phenotype, protect muscles from damage and enhance muscle repair. Enhancing these adaptations by combining LFS with pharmacologic modifiers of muscle phenotype potentially represents a novel therapy that could find immediate application to improve the pathology and enhance patient quality of life. Alternative approaches like anabolic agents or myostatin inhibition also have therapeutic potential, but their efficacy occurs through different mechanisms. Better understanding of the mechanisms underlying skeletal muscle adaptations to different interventions and stimuli will help optimise novel strategies to address the pathophysiology of DMD and related muscle conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen DL, Leinwand LA (2002) Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter. J Biol Chem 277:45323–45330

    Article  CAS  PubMed  Google Scholar 

  2. Barber L, Scicchitano BM, Musaro A (2015) Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors. Eur J Transl Myol 25:231–236

    Article  PubMed  Google Scholar 

  3. Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35:191–212

    Article  PubMed  Google Scholar 

  4. Blaauw B, Schiaffino S, Reggiani C (2013) Mechanisms modulating skeletal muscle phenotype. Compr Physiol 3:1645–1687

    Article  PubMed  Google Scholar 

  5. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    Article  CAS  PubMed  Google Scholar 

  6. Bolcal C, Yildirim V, Doganci S, Sargin M, Aydin A, Eken A, Ozal E, Kuralay E, Demirkilic U, Tatar H (2007) Protective effects of antioxidant medications on limb ischemia reperfusion injury. J Surg Res 139:274–279

    Article  CAS  PubMed  Google Scholar 

  7. Buller AJ, Pope R (1977) Plasticity in mammalian skeletal muscle. Philos Trans R Soc Lond B Biol Sci 278:295–305

    Google Scholar 

  8. Buller AJ, Eccles JC, Eccles RM (1960) Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol 150:417–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burke RE, Levine DN, Tsairis P, Zajac FE 3rd (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group (2010) Diagnosis and management of DMD, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

    Article  PubMed  Google Scholar 

  11. Caiozzo VJ, Baker MJ, Huang K, Chou H, Wu YZ, Baldwin KM (2003) Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions? Am J Physiol Regul Integr Comp Physiol 285:R570–R580

    Article  PubMed  Google Scholar 

  12. Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P, Mosole S, Zampieri S, Gobbo V, Ravara B, Piccione F, Marcante A, Baba A, Schils S, Pond A, Gava F (2015) Biology of muscle atrophy and of its recovery by FES in aging and mobility impairments: roots and by-products. Eur J Transl Myol 25:221–230

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakkalakal JV, Stocksley MA, Harrison MA, Angus LM, Deschenes-Furry J, St-Pierre S, Megeney LA, Chin ER, Michel RN, Jasmin BJ (2003) Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling. Proc Natl Acad Sci U S A 100:7791–7796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chakkalakal JV, Harrison MA, Carbonetto S, Chin E, Michel RN, Jasmin BJ (2004) Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Hum Mol Genet 13:379–388

    Article  CAS  PubMed  Google Scholar 

  15. Chakkalakal JV, Michel SA, Chin ER, Michel RN, Jasmin BJ (2006) Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet 15:1423–1435

    Article  CAS  PubMed  Google Scholar 

  16. Childers MK, Okamura CS, Bogan DJ, Bogan JR, Petroski GF, McDonald K, Kornegay JN (2002) Eccentric contraction injury in dystrophic canine muscle. Arch Phys Med Rehabil 83:1572–1578

    Article  PubMed  Google Scholar 

  17. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cully TR, Launikonis BS (2016) Leaky RyR1 delays the activation of store overload-induced Ca2+ release, a mechanism underlying malignant hyperthermia-like events in dystrophic muscle. Am J Physiol Cell Physiol 310:C673–C680

    PubMed  Google Scholar 

  19. Dangain J, Vrbová G (1989) Long term effect of low frequency chronic electrical stimulation on the fast hind limb muscles of dystrophic mice. J Neurol Neurosurg Psychiatry 52:1382–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deconinck N, Tinsley J, De Backer F, Fisher R, Kahn D, Phelps S, Davies K, Gillis JM (1997) Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 3:1216–1221

    Article  CAS  PubMed  Google Scholar 

  21. Drake JC, Wilson RJ, Yan Z (2016) Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J 30:13–22

    Article  CAS  PubMed  Google Scholar 

  22. Dubowitz V (1988) Responses of diseased muscle to electrical and mechanical intervention. CIBA Found Symp 138:240–255

    CAS  PubMed  Google Scholar 

  23. Dunn SE, Simard AR, Bassel-Duby R, Williams RS, Michel RN (2001) Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. J Biol Chem 276:45243–45254

    Article  CAS  PubMed  Google Scholar 

  24. Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119

    Article  PubMed  Google Scholar 

  25. Gillani S, Cao J, Suzuki T, Hak DJ (2012) The effect of ischemia reperfusion injury on skeletal muscle. Injury 43:670–675

    Article  PubMed  Google Scholar 

  26. Gehrig SM, Koopman R, Naim T, Tjoakarfa C, Lynch GS (2010) Making fast-twitch dystrophic muscles bigger protects them from contraction injury and attenuates the dystrophic pathology. Am J Pathol 176:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gehrig SM, Lynch GS (2011) Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opin Emerg Drugs 16:163–182

    Article  CAS  PubMed  Google Scholar 

  28. Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE, Lamon S, Russell AP, Davies KE, Febbraio MA, Lynch GS (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 484:394–398

    Article  CAS  PubMed  Google Scholar 

  29. Gorza L, Gundersen K, Lømo T, Schiaffino S, Westgaard RH (1988) Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol 402:627–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EK, Nagaraju K (2013) VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 5:1569–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  32. Karpati G, Carpenter S (1986) Small-caliber skeletal muscle fibers do not suffer deleterious consequences of dystrophic gene expression. Am J Med Genet 25:653–658

    Article  CAS  PubMed  Google Scholar 

  33. Khurana TS, Prendergast RA, Alameddine HS, Tome FM, Fardeau M, Arahata K, Sugita H, Kunkel LM (1995) Absence of extraocular muscle pathology in Duchenne’s muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing. J Exp Med 182:467–475

    Article  CAS  PubMed  Google Scholar 

  34. Kleopa KA, Drousiotou A, Mavrikiou E, Ormiston A, Kyriakides T (2006) Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy. Hum Mol Genet 15:1623–1628

    Article  CAS  PubMed  Google Scholar 

  35. Komen JC, Thorburn DR (2014) Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 171:1818–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamar KM, Bogdanovich S, Gardner BB, Gao QQ, Miller T, Earley JU, Hadhazy M, Vo AH, Wren L, Molkentin JD, McNally EM (2016) Overexpression of latent TGFβ binding protein 4 in muscle ameliorates muscular dystrophy through myostatin and TGFβ. PLoS Genet 12(5):e1006019

    Article  PubMed  PubMed Central  Google Scholar 

  37. Larsson L, Ansved T, Edström L, Gorza L, Schiaffino S (1991) Effects of age on physiological, immunohistochemical and biochemical properties of fast-twitch single motor units in the rat. J Physiol 443:257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee SJ, McPherron AC (1999) Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev 9:604–607

    Article  CAS  PubMed  Google Scholar 

  39. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J, Trowell B, Gertz B, Jiang MS, Sebald SM, Matzuk M, Li E, Liang LF, Quattlebaum E, Stotish RL, Wolfman NM (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Prc Natl Acad Sci USA 102:18117–18122

    Google Scholar 

  40. Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH (2015) Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 5:18353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Yim S, Pacheck A, Sanchez B, Rutkove SB (2016) Electrical impedance myography to detect the effects of electrical muscle stimulation in wild type and mdx mice. PLoS One 11(3):e0151415

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ljubicic V, Miura P, Burt M, Boudreault L, Khogali S, Lunde JA, Renaud JM, Jasmin BJ (2011) Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum Mol Genet 20:3478–3493

    Article  CAS  PubMed  Google Scholar 

  43. Ljubicic V, Khogali S, Renaud JM, Jasmin BJ (2012) Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 302:C110–C121

    Article  CAS  PubMed  Google Scholar 

  44. Ljubicic V, Burt M, Jasmin BJ (2014) The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 28:548–568

    Article  CAS  PubMed  Google Scholar 

  45. Lieber RL, Friden J (1988) Selective damage of fast glycolytic muscle fibres with eccentric contraction of the rabbit tibialis anterior. Acta Physiol Scand 133:587–588

    Article  CAS  PubMed  Google Scholar 

  46. Lomo T (2014) The response of denervated muscle to long-term stimulation (1985, Revisited here in 2014). Eur J Transl Myol 24:3294

    PubMed  PubMed Central  Google Scholar 

  47. Lynch GS, Ryall JG (2008) Role of β-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88:729–767

    Article  CAS  PubMed  Google Scholar 

  48. Macpherson PC, Schork MA, Faulkner JA (1996) Contraction-induced injury to single fiber segments from fast and slow muscles of rats by single stretches. Am J Phys 271:C1438–C1446

    CAS  Google Scholar 

  49. Markert CD, Ambrosio F, Call JA, Grange RW (2011) Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve 43:464–478

    Article  CAS  PubMed  Google Scholar 

  50. Markert CD, Case LE, Carter GT, Furlong PA, Grange RW (2012) Exercise and Duchenne muscular dystrophy: where we have been and where we need to go. Muscle Nerve 45:746–751

    Article  PubMed  Google Scholar 

  51. Martins KJ, Gordon T, Pette D, Dixon WT, Foxcroft GR, Maclean IM, Putman CT (2006) Effect of satellite cell ablation on low-frequency-stimulated fast-to-slow fibre-type transitions in rat skeletal muscle. J Physiol 572:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martins KJ, Murdoch GK, Shu Y, Harris RL, Gallo M, Dixon WT, Foxcroft GR, Gordon T, Putman CT (2009) Satellite cell ablation attenuates short-term fast-to-slow fibre type transformations in rat fast-twitch skeletal muscle. Pflugers Arch 458:325–335

    Article  CAS  PubMed  Google Scholar 

  53. Martins KJ, MacLean I, Murdoch GK, Dixon WT, Putman CT (2011) Nitric oxide synthase inhibition delays low-frequency stimulation-induced satellite cell activation in rat fast-twitch muscle. Appl Physiol Nutr Metab 36:996–1000

    Article  CAS  PubMed  Google Scholar 

  54. Martins KJ, St-Louis M, Murdoch GK, MacLean IM, McDonald P, Dixon WT, Putman CT, Michel RN (2012) Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions. J Physiol 590:1427–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  56. Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD (2008) Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 14:442–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyamoto T, Kamada H, Tamaki A, Moritani T (2016) Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. Eur J Sport Sci Mar 1:1–7

    Google Scholar 

  58. Mohler LR, Pedowitz RA, Ohara WM, Oyama BK, Lopez MA, Gershuni DH (1996) Effects of an antioxidant in a rabbit model of tourniquet-induced skeletal muscle ischemia-reperfusion injury. J Surg Res 60:23–28

    Article  CAS  PubMed  Google Scholar 

  59. Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S, Mann M (2015) Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep 16:387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS (2010a) Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176:2425–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ibebunjo C, Lynch GS (2010b) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442

    Article  CAS  PubMed  Google Scholar 

  62. Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS (2011a) Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Physiol Regul Integr Comp Physiol 301:R716–R726

    Article  CAS  PubMed  Google Scholar 

  63. Murphy KT, Cobani V, Ryall JG, Ibebunjo C, Lynch GS (2011b) Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. J Appl Physiol 110:1065–1072

    Article  CAS  PubMed  Google Scholar 

  64. Olson EN, Williams RS (2000) Remodeling muscles with calcineurin. Bioessays 22:510–519. Erratum 22:1049

    Google Scholar 

  65. Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD (2003) Altered skeletal muscle phenotypes in calcineurin Aα and Aβ gene-targeted mice. Mol Cell Biol 23:4331–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petrof BJ, Stedman HH, Shrager JB, Eby J, Sweeney HL, Kelly AM (1993a) Adaptations in myosin heavy chain expression and contractile function in dystrophic mouse diaphragm. Am J Phys 265:C834–C841

    CAS  Google Scholar 

  67. Putman CT, Sultan KR, Wassmer T, Bamford JA, Skorjanc D, Pette D (2001) Fiber-type transitions and satellite cell activation in low-frequency-stimulated muscles of young and aging rats. J Gerontol A Biol Sci Med Sci 56:B510–B519

    Article  CAS  PubMed  Google Scholar 

  68. Putman CT, Martins KJ, Gallo ME, Lopaschuk GD, Pearcey JA, MacLean IM, Saranchuk RJ, Pette D (2007) Alpha-catalytic subunits of 5'AMP-activated protein kinase display fiber-specific expression and are upregulated by chronic low-frequency stimulation in rat muscle. Am J Physiol Regul Integr Comp Physiol 293:R1325–R1334

    Article  CAS  PubMed  Google Scholar 

  69. Pearen MA, Myers SA, Raichur S, Ryall JG, Lynch GS, Muscat GE (2008) The orphan nuclear receptor, NOR-1, a target of β-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 149:2853–2865

    Article  CAS  PubMed  Google Scholar 

  70. Pette D (2001) Plasticity of mammalian skeletal muscle. J Appl Physiol 90:1119–1124

    CAS  PubMed  Google Scholar 

  71. Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    CAS  PubMed  Google Scholar 

  72. Pette D, Vrbová G (1999) What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22:666–677

    Article  CAS  PubMed  Google Scholar 

  73. Pool D, Elliott C, Bear N, Donnelly CJ, Davis C, Stannage K, Valentine J (2016) Neuromuscular electrical stimulation-assisted gait increases muscle strength and volume in children with unilateral spastic cerebral palsy. Dev Med Child Neurol 58:492–501

    Article  PubMed  Google Scholar 

  74. Quiat D, Voelker KA, Pei J, Grishin NV, Grange RW, Bassel-Duby R, Olson EN (2011) Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci U S A 108:10196–101201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rafael JA, Tinsley JM, Potter AC, Deconinck AE, Davies KE (1998) Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nat Genet 19:79–82

    Article  CAS  PubMed  Google Scholar 

  76. Rafael JA, Brown SC (2000) Dystrophin and utrophin: genetic analyses of their role in skeletal muscle. Microsc Res Tech 484:155–166

    Article  Google Scholar 

  77. Ryall JG, Plant DR, Gregorevic P, Sillence MN, Lynch GS (2004) β2-agonist administration reverses muscle wasting and improves muscle function in aged rats. J Physiol 555:175–188

    Article  CAS  PubMed  Google Scholar 

  78. Ryall JG, Schertzer JD, Lynch GS (2007) Attenuation of age-related muscle wasting and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia. J Gerontol A Biol Sci Med Sci 62:813–823

    Article  PubMed  Google Scholar 

  79. Salmons S, Vrbová G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol 201:535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology 22:269–278

    Article  CAS  PubMed  Google Scholar 

  81. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  82. Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C (2015) Developmental myosins: expression patterns and functional significance. Skelet Muscle 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  83. Scott OM, Vrbová G, Hyde SA, Dubowitz V (1986) Responses of muscles of patients with Duchenne muscular dystrophy to chronic electrical stimulation. J Neurol Neurosurg Psychiatry 49:1427–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scott OM, Hyde SA, Vrbová G, Dubowitz V (1990) Therapeutic possibilities of chronic low frequency electrical stimulation in children with Duchenne muscular dystrophy. J Neurol Sci 95:171–182

    Article  CAS  PubMed  Google Scholar 

  85. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Google Scholar 

  86. Stefanou C, Karatzanos E, Mitsiou G, Psarra K, Angelopoulos E, Dimopoulos S, Gerovasili V, Boviatsis E, Routsi C, Nanas S (2016) Neuromuscular electrical stimulation acutely mobilizes endothelial progenitor cells in critically ill patients with sepsis. Ann Intensive Care 6(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stupka N, Gregorevic P, Plant DR, Lynch GS (2004) The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice. Acta Neuropathol 107:299–310

    Article  CAS  PubMed  Google Scholar 

  88. Stupka N, Michell BJ, Kemp BE, Lynch GS (2006a) Differential calcineurin signalling activity and regeneration efficacy in diaphragm and limb muscles of dystrophic mdx mice. Neuromuscul Disord 16:337–346

    Article  PubMed  Google Scholar 

  89. Stupka N, Plant DR, Schertzer JD, Emerson TM, Bassel-Duby R, Olson EN, Lynch GS (2006b) Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J Physiol 575:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stupka N, Schertzer JD, Bassel-Duby R, Olson EN, Lynch GS (2008) Stimulation of calcineurin α activity attenuates muscle pathophysiology in mdx dystrophic mice. Am J Phys 294:R983–R992

    CAS  Google Scholar 

  91. Subbotina E, Sierra A, Zhu Z, Gao Z, Koganti SR, Reyes S, Stepniak E, Walsh SA, Acevedo MR, Perez-Terzic CM, Hodgson-Zingman DM, Zingman LV (2015) Musclin is an activity-stimulated myokine that enhances physical endurance. Proc Natl Acad Sci U S A 112:16042–16047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Swiderski K, Lynch GS (2015) Therapeutic potential of orphan drugs for the rare skeletal muscle diseases. Expert Opin Orphan Drugs 3:1397–1425

    Article  CAS  Google Scholar 

  93. Talbot J, Maves L (2016) Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. doi:10.1002/wdev.230

    PubMed  Google Scholar 

  94. Tavi P, Westerblad H (2011) The role of in vivo Ca2+ signals acting on Ca2+-calmodulin-dependent proteins for skeletal muscle plasticity. J Physiol 589:5021–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE (1996) Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384:349–353

    Article  CAS  PubMed  Google Scholar 

  96. Vignos PJ Jr, Watkins MP (1966) The effect of exercise in muscular dystrophy. JAMA 197:843–848

    Article  PubMed  Google Scholar 

  97. Vrbová G, Ward K (1981) Observations on the effects of low frequency electrical stimulation on fast muscles of dystrophic mice. J Neurol Neurosurg Psychiatry 44:1002–1006

    Article  PubMed  PubMed Central  Google Scholar 

  98. Walters TJ, Kragh JF, Baer DG (2008) Influence of fiber-type composition on recovery from tourniquet-induced skeletal muscle ischemia-reperfusion injury. Appl Physiol Nutr Metab 33:272–281

    Article  PubMed  Google Scholar 

  99. Webster C, Silberstein L, Hays AP, Blau HM (1988) Fast muscle fibers preferentially affected in DMD. Cell 52:503–513

    Article  CAS  PubMed  Google Scholar 

  100. Zeman RJ, Ludemann R, Easton TG, Etlinger JD (1988) Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a β2-receptor agonist. Am J Phys 254:E726–E732

    CAS  Google Scholar 

  101. Zupan A (1992) Long-term electrical stimulation of muscles in children with Duchenne and Becker muscular dystrophy. Muscle Nerve 15:362–367

    Article  CAS  PubMed  Google Scholar 

  102. Zupan A, Gregoric M, Valencic V, Vandot S (1993) Effects of electrical stimulation on muscles of children with Duchenne and Becker muscular dystrophy. Neuropediatrics 24:189–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GSL gratefully acknowledges the funding agencies that have facilitated his group’s research on skeletal muscle plasticity and muscle wasting conditions, especially the Muscular Dystrophy Association (USA), National Health and Medical Research Council (Australia), Australian Research Council, Association Francaise contre les Myopathies (France), Dutch Parent Project Muscular Dystrophy (Netherlands), CASS Foundation and the Rebecca L. Cooper Medical Research Foundation. The pharmaceutical industry have also facilitated studies investigating interventions to counter muscle wasting in different conditions, and significant support from Pfizer Inc. (USA), Merck & Co. Inc. (USA), F. Hoffmann La-Roche Ltd. (Switzerland), Ajinomoto Co. Inc. (Japan), Palatin Technologies Inc. (USA) and Bioibérica S.A. (Spain) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon S. Lynch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lynch, G.S. (2017). Therapeutic Potential of Skeletal Muscle Plasticity and Slow Muscle Programming for Muscular Dystrophy and Related Muscle Conditions. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics