Skip to main content

Unraveling the Role of Long Noncoding RNAs in Pluripotent Stem Cell-Based Neuronal Commitment and Neurogenesis

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic
  • 1008 Accesses

Abstract

Adult neurogenesis is primarily directed by neural progenitor cells, which reside in the subventricular zone (SVZ) and subgranular zone (SGZ) of the brain. Unfolding transcriptional heterogeneity and complexity of various neurodevelopmental stages can probe new insights into neurogenesis and neurodevelopmental disorders. Recent findings have suggested that epigenetic regulatory mechanisms in neural differentiation involve long noncoding RNAs (lncRNAs) as a new genre of regulators. Although many studies have addressed the overall consequences of the noncoding RNome (noncoding RNA content) on the genome, lesser is known about their specific roles and consequences in adult neurogenesis, neurodevelopmental stages, and onset of neuropathology. Recent advances in induced pluripotent stem cell (iPSC)-based neurological disease modeling have shed light on new avenues to investigate neuronal development as well as molecular paradigms underlying onset of neurological impairments. However, due to limited availability of brain tissues and gap in the understanding of lncRNA biomarkers in neurodevelopment, the study of lncRNA in neurogenesis still exists at its infancy. To further understand the lncRNA-mediated regulation in stage-specific development of pluripotent stem cell-derived neurons and other brain cells, we identified potential lncRNA signatures implicative in brain development or dysregulation using data mining and analyses. They may be used in monitoring disease progression and may serve as potential targets for novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AP:

Anteroposterior

DA:

Dopaminergic

DCX:

Doublecortin

DG:

Dentate gyrus

EB:

Embryonic body

hESCs:

Human embryonic stem cells

iPSCs:

Induced pluripotent stem cells

lncRNAs:

Long noncoding RNAs

NECs:

Neuroepithelial cells

NGS:

Next-generation sequencing

NPCs:

Neural progenitor cells

PSA-NCAM:

Polysialylated neural cell adhesion molecule

SGZ:

Subgranular zone

snoRNAs:

Small noncoding RNAs

References

  1. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol. 1998;36(2):287–306.

    Article  CAS  PubMed  Google Scholar 

  2. Nicola Z, Fabel K, Kempermann G. Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat. 2015;9:53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spalding KL, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ninkovic J, Götz M. Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol. 2007;17(3):338–44.

    Article  CAS  PubMed  Google Scholar 

  5. Imayoshi I, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11(10):1153–61.

    Article  CAS  PubMed  Google Scholar 

  6. Ernst A, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83.

    Article  CAS  PubMed  Google Scholar 

  7. Supeno NE, et al. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci. 2013;10(5):522–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Song N. Molecular mechanism of adult neurogenesis and its association with human brain diseases. J Cent Nerv Syst Dis. 2016;8:5–11.

    PubMed  PubMed Central  Google Scholar 

  9. Ming G-l, Song H. DISC1 partners with GSK3β in neurogenesis. Cell. 2009;136(6):990–2.

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa M, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  12. Knauss JL, Sun T. Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function. Neuroscience. 2013;235:200–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pannese E. The black reaction. Brain Res Bull. 1996;41(6):343–9.

    Article  CAS  PubMed  Google Scholar 

  14. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    Article  CAS  PubMed  Google Scholar 

  15. Eriksson PS, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707.

    Article  CAS  PubMed  Google Scholar 

  17. Richards L, Kilpatrick T, Bartlett P. De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci. 1992;89(18):8591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. NOTTEBOHM F. The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann N Y Acad Sci. 2004;1016(1):628–58.

    Article  PubMed  Google Scholar 

  19. Seki T, Arai Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci. 1993;13(6):2351–8.

    CAS  PubMed  Google Scholar 

  20. Deng X-Y, et al. Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther. 2015;10(2):153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Devito L, et al. Cost-effective master cell bank validation of multiple clinical-grade human pluripotent stem cell lines from a single donor. Stem Cells Transl Med. 2014;3(10):1116–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang J, et al. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Res Ther. 2015;6(1):1.

    Article  CAS  Google Scholar 

  23. Grskovic M, et al. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011;10(12):915–29.

    CAS  PubMed  Google Scholar 

  24. Kálmán S, Hathy E, Réthelyi JM. A dishful of a troubled mind: induced pluripotent stem cells in psychiatric research. Stem Cells Int. 2016;2016:7909176.

    Article  PubMed  Google Scholar 

  25. Maury Y, et al. Human pluripotent stem cells for disease modelling and drug screening. BioEssays. 2012;34(1):61–71.

    Article  CAS  PubMed  Google Scholar 

  26. Meneghello G, et al. Evaluation of established human iPSC-derived neurons to model neurodegenerative diseases. Neuroscience. 2015;301:204–12.

    Article  CAS  PubMed  Google Scholar 

  27. Thiruvalluvan A, et al. Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl Med. 2016;5(11):1550–61.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou S, et al. The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation. 2016;92(4):183–94.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou S, et al. Neurosphere based differentiation of human iPSC improves astrocyte differentiation. Stem Cells Int. 2015;2016:4937689.

    PubMed  PubMed Central  Google Scholar 

  30. Liyang G, et al. Neural commitment of embryonic stem cells through the formation of embryoid bodies (EBs). MalaysJ Med Sci. 2014;21(5):8.

    Google Scholar 

  31. Pettinato G, Wen X, Zhang N. Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays. Sci Rep. 2014;4:7402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho E-G, et al. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS One. 2011;6(8):e24027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elkabetz Y, et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22(2):152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schulz TC, et al. Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci. 2003;4(1):1.

    Article  Google Scholar 

  35. Boissart C, et al. miR-125 potentiates early neural specification of human embryonic stem cells. Development. 2012;139(7):1247–57.

    Article  CAS  PubMed  Google Scholar 

  36. Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pombero A, Martinez S. Telencephalic morphogenesis during the process of neurulation: An experimental study using quail–chick chimeras. J Comp Neurol. 2009;512(6):784–97.

    Article  CAS  PubMed  Google Scholar 

  38. Vieira C, et al. Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol. 2009;54(1):7–20.

    Article  CAS  Google Scholar 

  39. Li X-J, et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009;136(23):4055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng H, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One. 2010;5(7):e11853.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Carri AD, et al. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development. 2013;140(2):301–12.

    Article  CAS  Google Scholar 

  42. Maroof AM, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12(5):559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friling S, et al. Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci. 2009;106(18):7613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rhee Y-H, et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest. 2011;121(6):2326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kirkeby A, et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012;1(6):703–14.

    Article  CAS  PubMed  Google Scholar 

  46. Kriks S, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson/'s disease. Nature. 2011;480(7378):547–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Codega P, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82(3):545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koch P, et al. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A. 2009;106(9):3225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi Y, et al. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 2012;15(3):477–86.

    Article  CAS  PubMed  Google Scholar 

  50. Espuny-Camacho I, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron. 2013;77(3):440–56.

    Article  CAS  PubMed  Google Scholar 

  51. Vazin T, et al. Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer's disease. Neurobiol Dis. 2014;62:62–72.

    Article  CAS  PubMed  Google Scholar 

  52. Hartfield EM, et al. Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One. 2014;9(2):e87388.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Bissonnette CJ, et al. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells. 2011;29(5):802–11.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hu B-Y, Du Z-W, Zhang S-C. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc. 2009;4(11):1614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marín O, Rubenstein JL. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci. 2001;2(11):780–90.

    Article  PubMed  CAS  Google Scholar 

  56. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pollard KS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443(7108):167–72.

    Article  CAS  PubMed  Google Scholar 

  58. Dinger ME, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo H, et al. Comprehensive characterization of 10,571 mouse large intergenic noncoding RNAs from whole transcriptome sequencing. PLoS One. 2013;8(8):e70835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang L, et al. Regulation of neuronal-glial fate specification by long non-coding RNAs. Rev Neurosci. 2016;27(5):491–9.

    Article  CAS  PubMed  Google Scholar 

  61. Amaral PP, et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 2009;15(11):2013–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mercer TR, et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ramos AD, et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16(4):439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tochitani S, Hayashizaki Y. Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochem Biophys Res Commun. 2008;372(4):691–6.

    Article  CAS  PubMed  Google Scholar 

  65. Price M, et al. Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron. 1992;8(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  66. Sunkin SM, et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2013;41(D1):D996–D1008.

    Article  CAS  PubMed  Google Scholar 

  67. Carninci P, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  CAS  PubMed  Google Scholar 

  68. Ponjavic J, et al. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 2009;5(8):e1000617.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Guttman M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mercer TR, et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010;11(1):1–15.

    Article  CAS  Google Scholar 

  71. Ramos AD, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell. 2013;12(5):616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mattick JS. RNA regulation: a new genetics? Nat Rev Genet. 2004;5(4):316–23.

    Article  CAS  PubMed  Google Scholar 

  73. The EPC. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  CAS  Google Scholar 

  74. Yan D, et al. Identification and analysis of intermediate size noncoding RNAs in the human fetal brain. PLoS One. 2011;6(7):e21652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mercer TR, et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lai F, et al. Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature. 2013;494(7438):497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hacisuleyman E, et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 2014;21(2):198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spector DL, Lamond AI. Nuclear speckles. Cold Spring Harb Perspect Biol. 2011;3(2):a000646.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Clemson CM, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tripathi V, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoon J-H, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Guil S, et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol. 2012;19(7):664–70.

    Article  CAS  PubMed  Google Scholar 

  83. Tsai MC, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao J, et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322(5902):750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keller C, et al. Noncoding RNAs prevent spreading of a repressive histone mark. Nat Struct Mol Biol. 2013;20(8):994–1000.

    Article  CAS  PubMed  Google Scholar 

  86. Lister R, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. D’haene E, et al. Identification of long non-coding RNAs involved in neuronal development and intellectual disability. Sci Rep. 2016;6:28396.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  89. Nagano T, et al. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.

    Article  CAS  PubMed  Google Scholar 

  90. Pandey RR, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2):232–46.

    Article  CAS  PubMed  Google Scholar 

  91. van Heesch S, et al. Extensive localization of long noncoding RNAs to the cytosol and mono-and polyribosomal complexes. Genome Biol. 2014;15(1):1.

    Article  CAS  Google Scholar 

  92. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  93. Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31(3):522–33.

    Article  CAS  PubMed  Google Scholar 

  94. Mohamed JS, et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA. 2010;16(2):324–37.

    Article  CAS  Google Scholar 

  95. Lin N, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ng SY, et al. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell. 2013;51(3):349–59.

    Article  CAS  PubMed  Google Scholar 

  97. Onoguchi M, et al. A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proc Natl Acad Sci U S A. 2012;109(42):16939–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bernard D, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29(18):3082–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bond AM, et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 2009;12(8):1020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rapicavoli NA, Poth EM, Blackshaw S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol. 2010;10:49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Lin M, et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One. 2011;6(9):e23356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mo C-F, et al. Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. Stem Cell Res Ther. 2015;6(1):1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge R. Ayana, Ph.D. fellow of the Department of Life Sciences, Shiv Nadar University, India, for the original illustrations depicting adult neurogenesis. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Singh Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pati, S., Singh, S. (2017). Unraveling the Role of Long Noncoding RNAs in Pluripotent Stem Cell-Based Neuronal Commitment and Neurogenesis. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_3

Download citation

Publish with us

Policies and ethics