Skip to main content

Annual Energy, Exergy, and Environmental Benefits of N Half Covered Concentrated Photovoltaic Thermal (CPVT) Air Collectors

  • Conference paper
  • First Online:
Advances in Smart Grid and Renewable Energy

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 435))

Abstract

In current study, the N identical concentrated photovoltaic thermal (PVT) has been designed where a series connection of N collectors has been adopted for higher outlet temperature of fluid. Here, air has been chosen as a fluid for proposed system. The low concentrator or compound parabolic concentrator (CPC) has been also implemented with photovoltaic thermal (PVT) to increase higher input energy or solar radiation to get much higher temperature from PVT. The air flow rate and no. of collector for CPVT (50% covered by PV module) air collector have been optimized for achieving 97 °C of outlet air temperature as eight number of collector (N = 8 at mass flow rate of 0.06 kg/s). The analysis has been carried out for a clear day condition for New Delhi, India. The proposed system has been useful for space heating or drying an object. Here, the net annual overall energy and exergy have been calculated as 1309.42 and 272.75 kWh, respectively. The electrical gain has also been found as 89.97 kWh. The enviroeconomic study also examined CO2 emission per annum is reduced by energy production and earned carbon credits. For present system, the earned carbon credits are as 38.73 and 8.06 $/year on the basis of overall thermal energy and overall exergy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chow, T.T.: A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 87, 365–379 (2010)

    Article  Google Scholar 

  2. Aste, N., Chiesa, G., Verri, F.: Design, development and performance monitoring of a photovoltaic-thermal (PVT) air collector. Ren. Energy 33, 914–927 (2008)

    Article  Google Scholar 

  3. Dincer, I.: The role of exergy in energy policy making. Energy Policy 30, 137–149 (2002)

    Article  Google Scholar 

  4. Fudholi, A., Sopian, K., Yazdi, M.H., Ruslan, M.H., Ibrahim, A., Kazem, H.A.: Performance analysis of photovoltaic thermal (PVT) water. Energy Convers. Manag. 78, 641–651 (2014)

    Article  Google Scholar 

  5. Agrawal, S., Tiwari, G.N., Pandey, H.D.: Indoor experimental analysis of glazed hybrid photovoltaic thermal tiles air collector connected in series. Energy Build. 53, 145–151 (2012)

    Article  Google Scholar 

  6. Agrawal, S., Tiwari, G.N.: Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors. Energy Convers. Manag. 65, 628–636 (2013)

    Article  Google Scholar 

  7. Rajoria, C.S., Agrawal, S., Tiwari, G.N., Chaursia, G.S.: Exergetic and enviroeconomic analysis of semitransparent PVT array based on optimum air flow configuration and its comparative study. Sol. Energy 122, 1138–1145 (2015)

    Article  Google Scholar 

  8. Al Imam, M.F.I., Beg, R.A., Rahman, M.S., Khan, M.Z.H.: Performance of PVT solar collector with compound parabolic concentrator and phase change materials. Energy Build. 113, 139–144 (2016)

    Article  Google Scholar 

  9. Tripathi, R., Tiwari, G.N., Al-Helal, I.M.: Thermal modelling of N partially covered photovoltaic thermal (PVT)—compound parabolic concentrator (CPC) collectors connected in series. Sol. Energy 123, 174–184 (2016)

    Article  Google Scholar 

  10. Tripathi, R., Tiwari, S., Tiwari, G.N.: Performance of partially covered N—number of photovoltaic thermal (PVT)—compound parabolic concentrator (CPC) series connected water heating system. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 10(1), 35–42 (2016)

    Google Scholar 

  11. Tripathi, R., Tiwari, G.N., Dwivedi, V.K.: Overall energy, exergy and carbon credit analysis of N partially covered photovoltaic thermal (PVT) concentrating collector connected in series. Sol. Energy 136, 260–267 (2016)

    Article  Google Scholar 

  12. Tripathi, R., Tiwari, G.N.: Energetic and exergetic analysis of N partially covered photovoltaic thermal-compound parabolic concentrator (PVT-CPC) collectors connected in series. Sol. Energy 137, 441–451 (2016)

    Article  Google Scholar 

  13. Tripathi, R., Tiwari, S., Tiwari, G.N.: Energy analysis of partially covered Number (N) of photovoltaic thermal-compound parabolic concentrator collectors connected in series at constant collection temperature mode. In: International Conference on IEEE Emerging Trends in Electrical Electronics & Sustainable Energy System (ICETEESES-2016), pp. 12–17 (2016)

    Google Scholar 

  14. Den Elzen, M.G.J., Hof, A.D., Beltran, A.M., Grassi, G., Roelfsema, M., van Ruijven, B., van Vliet, J., van Vuuren, D.P.: The Copenhagen accord: abatement costs and carbon prices resulting from the submissions. Environ. Sci. Policy 14(1), 28–39 (2011)

    Article  Google Scholar 

  15. Caliskan, H., Dincer, I., Hepbasli, A.: Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler. Energy Build. 55, 747–756 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Tripathi .

Editor information

Editors and Affiliations

Appendix

Appendix

$$U_{tc,a} = \left[ {\frac{1}{{h_{o} }} + \frac{{L_{g} }}{{K_{g} }}} \right]^{ - 1} ;\quad U_{tc,p} = \left[ {\frac{1}{{h_{i} }} + \frac{{L_{g} }}{{K_{g} }}} \right]^{ - 1} ;$$
$$U_{tp,a} = \left[ {\frac{1}{{U_{tc,a} }} + \frac{1}{{U_{tc,p} }}} \right]^{ - 1} + \left[ {\frac{1}{{h_{i}^{'} }} + \frac{1}{{h_{pf} }} + \frac{{L_{i} }}{{K_{i} }}} \right]^{ - 1}$$
$$h_{0} = 5.7 + 3.8V\,{\text{W}}/{\text{m}}^{2} \,{\text{K}};\quad V = 1\,{\text{m}}/{\text{s}} ;\quad h_{i} = 5.7\,{\text{W}}/{\text{m}}^{2} \,{\text{K}};$$
$$h_{i}^{'} = 2.8 + 3V^{'} \,{\text{W}}/{\text{m}}^{2} \,{\text{K}};\quad V^{'} = 1\,{\text{m}}/{\text{s}};\quad \left( {AF_{R} \left( {\alpha \tau } \right)} \right)_{m1} = PF_{2} \left( {\alpha \tau } \right)_{{m,{\text{eff}}}} A_{m} F_{Rm} ;$$
$$\begin{aligned} U_{L1} & = \frac{{U_{tc,p} U_{tc,a} }}{{U_{tc,p} + U_{tc,a} }};\quad U_{L2} = U_{L1} + U_{tp,a} ; \\ U_{L,m} & = \frac{{h_{pf} U_{L2} }}{{F^{'} h_{pf} + U_{L2} }} ;\quad U_{L,c} = \frac{{h_{pf} U_{tp,a} }}{{F^{'} h_{pf} + U_{tp,a} }}; \\ \end{aligned}$$
$$\begin{aligned} PF_{c} & = \frac{{h_{pf} }}{{F^{'} h_{pf} + U_{tp,a} }};\quad PF_{1} = \frac{{U_{tc,p} }}{{U_{tc,p} + U_{tc,a} }}; \\ PF_{2} & = \frac{{h_{pf} }}{{F^{'} h_{pf} + U_{L2} }};\left( {\alpha \tau } \right)_{{c,{\text{eff}}}} = PF_{c} \alpha_{p} \tau_{g } \frac{{A_{ac} }}{{A_{rc} }}; \\ \end{aligned}$$
$$\left( {\alpha \tau } \right)_{{1,{\text{eff}}}} = \left( {\alpha_{c} - \eta_{c} } \right)\tau_{g} \beta_{c} \frac{{A_{am} }}{{A_{rm} }};\quad \left( {\alpha \tau } \right)_{{2,{\text{eff}}}} = \alpha_{p} \tau_{g }^{2} \left( {1 - \beta } \right)\frac{{A_{am} }}{{A_{rm} }};$$
$$\begin{aligned} \left( {\alpha \tau } \right)_{{m,{\text{eff}}}} & = \left[ {\left( {\alpha \tau } \right)_{{1,{\text{eff}}}} + PF_{1} \left( {\alpha \tau } \right)_{{1,{\text{eff}}}} } \right]; \\ A_{c} F_{Rc} & = \frac{{\dot{m}_{f} c_{f} }}{{U_{L,c} }}\left[ {1 - \exp \left( {\frac{{ - F^{'} U_{L,c} A_{c} }}{{\dot{m}_{f} c_{f} }}} \right)} \right]; \\ \end{aligned}$$
$$\begin{aligned} A_{m} F_{Rm} & = \frac{{\dot{m}_{f} c_{f} }}{{U_{L,m} }}\left[ {1 - \exp \left( {\frac{{ - F^{'} U_{L,m} A_{m} }}{{\dot{m}_{f} c_{f} }}} \right)} \right]; \\ \left( {AF_{R} U_{L} } \right)_{1} & = \left[ {A_{c} F_{Rc} U_{L,c} + A_{m} F_{Rm} U_{L,m} \left( {1 - \frac{{A_{c} F_{Rc} U_{L,c} }}{{\dot{m}_{f} c_{f} }}} \right)} \right]; \\ \end{aligned}$$
$$\begin{aligned} \left( {AF_{R} \left( {\alpha \tau } \right)} \right)_{1} & = \left[ {A_{c} F_{Rc} \left( {\alpha \tau } \right)_{{c,{\text{eff}}}} + PF_{2} \left( {\alpha \tau } \right)_{{m,{\text{eff}}}} A_{m} F_{Rm} \left( {1 - \frac{{A_{c} F_{Rc} U_{L,c} }}{{\dot{m}_{f} c_{f} }}} \right)} \right]; \\ K_{k} & = \left( {1 - \frac{{\left( {AF_{R} U_{L} } \right)_{1} }}{{\dot{m}_{f} c_{f} }}} \right); \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Tripathi, R., Tiwari, G.N. (2018). Annual Energy, Exergy, and Environmental Benefits of N Half Covered Concentrated Photovoltaic Thermal (CPVT) Air Collectors. In: SenGupta, S., Zobaa, A., Sherpa, K., Bhoi, A. (eds) Advances in Smart Grid and Renewable Energy. Lecture Notes in Electrical Engineering, vol 435. Springer, Singapore. https://doi.org/10.1007/978-981-10-4286-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4286-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4285-0

  • Online ISBN: 978-981-10-4286-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics