Skip to main content

Nanomaterials Act as Plant Defense Mechanism

  • Chapter
  • First Online:
Nanotechnology

Abstract

Plants symbolize the prevalent edge between the environment and biosphere, so discovering how nanomaterials affect them is particularly significant for ecological assessments. Metal-based nanoparticles (NPs) can cause toxicity to terrestrial plants; however, there is little understanding of plant defense mechanisms that may counteract nanotoxicity. The occurrence of oxidative pressure is one of the major biochemical alterations following nanoparticle exposure, and it changes the balance between cell function and antioxidative defense mechanisms. Biochemical aspects generally cause the production of excess reactive oxygen species (ROS), disturbing membrane transport mechanisms, oxidative harm to the cell membrane, and DNA degradation. Globally plants had developed the antioxidant mechanism which tends to eliminate the access manufacture of ROS i.e. H2O2, OH− and O2 free radicals. Improved levels of antioxidative enzymes, for instance, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), are able to support plant cells in lightening the oxidative stress induced by different nanostructures. As the vital signals resolving defense gene establishment, ROS are principally drawn in the initiation of plant disease resistance responses. Further reviews are still needed to understand plant defense mechanism against the potential hazards of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nanoparticle on seed germination of selected crops. J Agric Sci Technol A2:815–823

    Google Scholar 

  • Arif N, Yadav V, Singh S, Kushwaha BK, Singh S, Tripathi DK, Vishwakarma K, Sharma S, Dubey NK, Chauhan DK (2016) Assessment of antioxidant potential of plants in response to heavy metals. In: Plant responses to xenobiotics. Springer Singapore, Singapore, pp 97–125

    Chapter  Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  PubMed  CAS  Google Scholar 

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase like activity of polymer coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312

    Article  CAS  Google Scholar 

  • Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-tunable oxidase like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem 83:2547–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  PubMed  Google Scholar 

  • Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:Article 15195

    Article  PubMed  CAS  Google Scholar 

  • Conesa JC (1995) Computer modeling of surfaces and defects on cerium dioxide. Surf Sci 339:337–352

    Article  CAS  Google Scholar 

  • Corma A, Atienzar P, Garcia H, Chane Ching JY (2004) Hierarchically mesostructured doped CeO2 with potential for solar cell use. Nat Mater 3:394–397

    Article  CAS  PubMed  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119

    Article  CAS  Google Scholar 

  • Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Autocatalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S (2013) Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8(9):1483–1508. doi:10.2217/nnm.13.133

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiologic al and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi A, Galavi M, Ramroudi M, Moaveni P (2016) Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in Pinto Bean (Phaseolus vulgaris L.) J Mol Biol Res 6:58–66

    Article  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Biol 50(1):641–664

    Article  CAS  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instructor. doi:10.1094/PHI-I-2008-0226-01

  • Henry E, Yadeta KA, Coaker G (2013) Recognition of bacterial plant pathogens: local, systemic and transgene rational immunity. New Phytol 199:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, GardeaTorresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Liu Y, Li X, Li M (2013) Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles. Arch Environ Contam Toxicol 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Kaittanis C, Santra S, Asati A, Perez JM (2012) A cerium oxide nanoparticles based device for the detection of chronic inflammation via optical and magnetic resonance imaging. Nanoscale 4:2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S (2010) Rare earth oxides as nanoadditives in 3D nanocomposite scaffolds for bone regeneration. J Mater Chem 20:8912–8919

    Article  CAS  Google Scholar 

  • Kaspar J, Fornasiero P, Graziani M (1999) Use of CeO2 based oxides in the three way catalysis. Catal Today 50:285–298

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806

    Article  CAS  Google Scholar 

  • Kothandapani B, Mishra AK (2013) Synthesis of poly (methacrylate) encapsulated magnetite nanoparticles via phosphoric acid anchoring chemistry and its applications towards biomedicine, chapter 3. In: Nanomedicine for drug delivery and therapeutics. Wiley, Hoboken, pp 63–86

    Chapter  Google Scholar 

  • Kuchma MH, Komanski C, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH (2010) Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed Nanotechnol 6:738–744

    Article  CAS  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854

    Article  CAS  Google Scholar 

  • Li SJ, Zhu TH (2013) Biochemical response and induced resistance against anthracnose (Colletotrichum camelliae) of camellia (Camellia pitardii) by chitosan oligosaccharide application. For Pathol 43:67–76. doi:10.1111/j.1439-0329.2012.00797.x

    Google Scholar 

  • Li X, Sun L, Ge A, Guo Y (2011) Enhanced chemiluminescence detection of thrombin based on cerium oxide nanoparticles. Chem Commun 47:947–949

    Article  CAS  Google Scholar 

  • Li B, Liu BP, Shan CL, Ibrahim M, Lou YH, Wang YL, Xie GL, Li HY, Sun GC (2013a) Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Manag Sci 69:312–320. doi:10.1002/ps.3399

    Article  CAS  PubMed  Google Scholar 

  • Li M, Shi P, Xu C, Ren JS, Qu XG (2013b) Cerium oxide caged metal chelator: antiaggregation and antioxidation integrated H2O2 responsive controlled drug release for potential Alzheimer’s disease treatment. Chem Sci 4:2536–2542

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Xu C, Ren JS, Qu XG (2012) Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform labelfree, resettable, and colorimetric logic operations. Angew Chem Int 51:12579–12583

    Article  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  • Ma CX, White JC, Dhankher OP, Xing B (2015a) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Wang Q, Rossi L, Zhang WL (2015b) Cerium oxide nanoparticles and bulk Cerium oxide lead to different physiological and biochemical responses in Brassica rapa. Environ Sci Technol. http://dx.doi.org/10.1021/acs.est.5b04111

  • Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher O-P (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3:1369–1379

    Article  CAS  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas JA, Sahi S, Gardea-Torresdey JL (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287

    Article  CAS  PubMed  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2012) Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma 249:89–98

    Article  CAS  PubMed  Google Scholar 

  • Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20:1617–1624

    Article  CAS  Google Scholar 

  • McCann HC, Nahal H, Thakur S, Guttman DS (2012) Identification of innate immunity elicitors using molecular signatures of natural selection. Proc Natl Acad Sci 109:4215–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142:431–440

    Article  PubMed  CAS  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58:1423–1430

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162(13):342–352

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.) Ecotoxicol Environ Safe 113:302–313

    Article  CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM (2016) Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants (Basel) 5(2). doi:10.3390/antiox5020015

  • Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280

    Article  CAS  PubMed  Google Scholar 

  • Ozimek L, Pospiech E, Narine S (2010) Nanotechnologies in food and meat processing. Acta Sci Pol Technol Aliment 9(4):401–412

    CAS  Google Scholar 

  • Patil S, Kuiry SC, Seal S, Vanfleet R (2002) Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. J Nanopart Res 4:433–438

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:Article ID 963961. http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Oxfordshire, pp 53–70

    Google Scholar 

  • Priyanka N, Venkatachalam P (2016) Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv Nat Sci Nanosci Nanotechnol 7:045018. http://iopscience.iop.org/2043-6262/7/4/045018

    Article  Google Scholar 

  • Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168:534–539

    Article  CAS  PubMed  Google Scholar 

  • Rangaraj SR, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.) RSC Adv 4:8461–8465

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao LJ, Barrios AC, Zhang JY, PeraltaVidea JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Alejandro T, Lee WY, Armando VR, Peralta-Videa JR, Gardea-Torresdey JL (2013c) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Nanotechnology and plant sciences. Springer, Cham, pp 1–17

    Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Saboktakin MR (2012) Chapter 3 Starch nanocomposite and nanoparticles: biomedical applications. In: Modern trends in chemistry and chemical engineering. Apple Academic Press, Oakville, pp 48–73

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  PubMed  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao LJ, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Article  CAS  PubMed  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  PubMed  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.) Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Shweta, Tripathi DK, Singh S, Singh S, Dubey NK, Chauhan DK (2016) Impact of nanoparticles on photosynthesis: challenges and opportunities. Mater Focus 5(5):405–411

    Article  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252:1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017a) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene. http://dx.doi.org/10.1016/j.plgene.2017.03.006

  • Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017b) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):99–106

    CAS  Google Scholar 

  • Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energy Rev 6:433–455

    Article  CAS  Google Scholar 

  • Suganeswari M, Shering MA, Bharathi P, JayaSutha J (2011) Nanoparticles: a novel system in current century. Int J Pharm Biol Sci Arch 2(2):847–854

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  CAS  PubMed  Google Scholar 

  • Tan F, Zhang YJ, Wang JL, Wei JY, Cai Y, Qian XH (2008) An efficient method for dephosphorylation of phosphopeptides by cerium oxide. J Mass Spectrom 43:628–632

    Article  CAS  PubMed  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Process Impacts 15:1830–1843

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012a) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34(1):279–289

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012b) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28(3):281–291

    Article  CAS  Google Scholar 

  • Tripathi DK, Chauhan DK, Kumar D, Tiwari SP (2012c) Morphology, diversity and frequency based exploration of phytoliths in Pennisetum typhoides Rich. Natl Acad Sci Lett 35(4):285–289

    Article  Google Scholar 

  • Tripathi DK, Kumar R, Pathak AK, Chauhan DK, Rai AK (2012d) Laser-induced breakdown spectroscopy and phytolith analysis: an approach to study the deposition and distribution pattern of silicon in different parts of wheat (Triticum aestivum L.) plant. Agric Res 1(4):352–361

    Article  CAS  Google Scholar 

  • Tripathi DK, Mishra S, Chauhan DK, Tiwari SP, Kumar C (2013) Typological and frequency based study of opaline silica (phytolith) deposition in two common Indian Sorghum L. species. Proc Natl Acad Sci India Sect B Biol Sci 83(1):97–104

    Article  Google Scholar 

  • Tripathi DK, Prasad R, Chauhan DK (2014a) An overview of biogenic silica production pattern in the leaves of Hordeum vulgare L. Indian J Plant Sci 3(2):167–177

    Google Scholar 

  • Tripathi DK, Singh VP, Gangwar S, Prasad SM, Maurya JN, Chauhan DK (2014b) Role of silicon in enrichment of plant nutrients and protection from biotic and abiotic stresses. In: Improvement of crops in the Era of climatic changes. Springer, New York, pp 39–56

    Chapter  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015a) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015b) Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133–144

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Gaur S, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2016a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. http://dx.doi.org/10.1016/j.plaphy.2016.07.030

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016b) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Ahmad P, Chauhan DK, Prasad SM (eds) (2016c) Silicon in plants: advances and future prospects. CRC Press, Boca Raton

    Google Scholar 

  • Tripathi DK, Singh S, Singh S, Chauhan DK, Dubey NK, Prasad R (2016d) Silicon as a beneficial element to combat the adverse effect of drought in agricultural crops. In: Water stress and crop plants: a sustainable approach. Wiley Blackwell, Chichester/Oxford, pp 682–694

    Chapter  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Dubey NK, Chauhan DK, Rai AK (2016e) LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. J Photochem Photobiol B Biol 154:89–98

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017a) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK (2017b) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8

    Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC (2017c) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle. Front Plant Sci 8

    Google Scholar 

  • Tripathi DK, Shweta SS, Yadav V, Arif N, Singh S, Dubey NK, Chauhan DK (2017d) Silicon: a potential element to combat adverse impact of UV-B in plants. In: UV-B radiation: from environmental stressor to regulator of plant growth, vol 175. Wiley Blackwell, Oxford/Chichester/Hoboken

    Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017e) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Trovarelli A (1996) Catalytic properties of ceria and CeO2 containing materials. Catal Rev 38:439–520

    Article  CAS  Google Scholar 

  • Wang H, Wu F, Meng W, White JC, Holden PA, Xing B (2013) Engineered nanoparticles may induce genotoxicity. Environ Sci Technol 47:13212–13214

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Liu HZ, Zhang YX, Xin H (2015) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34:554–561

    Article  CAS  PubMed  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev. Springer Verlag/EDP Sciences/INRA 35(2):569–588

    Article  CAS  Google Scholar 

  • Xu C, Lin Y, Wang J, Wu L, Wei W, Ren J, Qu X (2013) Nanoceria triggered synergetic drug release based on CeO2capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv Healthc Mater 2:1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. doi:10.5101/nbe.v9i1.p9-

    Article  Google Scholar 

  • Zhao LJ, Peng B, Hernandez-Viezcas JA, Rico C, Sun YP, Peralta-Videa JR, Tang XL, Niu GH, Jin LX, Varela-Ramirez A, Zhang JY, GardeaTorresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LJ, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Prasad, R., Gupta, N., Kumar, M., Kumar, V., Wang, S., Abd-Elsalam, K.A. (2017). Nanomaterials Act as Plant Defense Mechanism. In: Prasad, R., Kumar, V., Kumar, M. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4678-0_14

Download citation

Publish with us

Policies and ethics