Skip to main content

SERS Biosensing and Bioimaging: Design and Applications in Cancer Diagnostics

  • Chapter
  • First Online:
Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis

Abstract

Enhancement of cancer diagnostics based on biomarker detection and nanoparticle tags has been a focus of current scientific and medical research. Raman spectroscopy was one of the first methods used to identify different diseases based on their unique Raman signatures. The method is convenient and noninvasive, and has had many practical uses in surgery for monitoring respiratory and anesthetic gas mixtures. Unfortunately, owing to its weak efficiency and low sensitivity, Raman spectroscopy is not the optimal choice for routine use in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  • Ambrosi A, Airò F, Merkoçi A (2010) Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal Chem 82:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (2003) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2:50

    Article  CAS  Google Scholar 

  • Aroca RF, Ross DJ, Domingo C (2004) Surface-enhanced infrared spectroscopy. Appl Spectrosc 58:324A–338A

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52:5110–5114

    CAS  PubMed  Google Scholar 

  • Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8:352–361

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay PK, Hogerkorp C-M, Roederer M (2008) A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 125:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar HG, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron 24:1693–1699

    Article  CAS  PubMed  Google Scholar 

  • De Grand AM, Frangioni JV (2003) An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2:553–562

    Article  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • Dinish US, Balasundaram G, Chang Y-T, Olivo M (2014) Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep 4:4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doering WE, Nie S (2003) Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal Chem 75:6171–6176

    Google Scholar 

  • Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale optically detected biological labels. Adv Mater 19:3100–3108

    Article  CAS  Google Scholar 

  • Eapen DJ, Manocha P, Patel RS, Hammadah M, Veledar E, Wassel C, Nanjundappa RA, Sikora S, Malayter D, Wilson PWF, Sperling L, Quyyumi AA, Epstein SE (2013) Aggregate risk score based on markers of inflammation, cell stress, and coagulation is an independent predictor of adverse cardiovascular outcomes. J Am Coll Cardiol 62:329–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans RA (2003) Positive surgical margins and ipsilateral breast tumor recurrence predict disease-specific survival after breast-conserving therapy. Cancer 98:2522–2523. author reply 2523–2524

    Article  PubMed  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  • Fortin T, Salvador A, Charrier JP, Lenz C, Lacoux X, Morla A, Choquet-Kastylevsky G, Lemoine J (2009) Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests. Mol Cell Proteomics 8:1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furtak TE, Macomber SH (1983) Voltage-induced shifting of charge-transfer excitations and their role in surface-enhanced Raman scattering. Chem Phys Lett 95:328–332

    Article  CAS  Google Scholar 

  • Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3:548–551

    Article  CAS  PubMed  Google Scholar 

  • Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Koller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987

    Article  CAS  Google Scholar 

  • Grubisha DS, Lipert RJ, Park H-Y, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943

    Article  CAS  PubMed  Google Scholar 

  • Harmsen S, Bedics MA, Wall MA, Huang R, Detty MR, Kircher MF (2015a) Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat Commun 6:6570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF (2015b) Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7:271ra277

    Article  Google Scholar 

  • Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Google Scholar 

  • Hong S, Li X (2013) Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions. J Nanomater 2013:9

    Google Scholar 

  • Hsin-Neng W, Tuan V-D (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20:065101

    Article  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    Article  CAS  PubMed  Google Scholar 

  • Jarvis RM, Goodacre R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76:40–47

    Google Scholar 

  • Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. J Electroanal Chem Interfacial Electrochem 84:1–20

    Article  CAS  Google Scholar 

  • Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Jia C-P, Zhong X-Q, Hua B, Liu M-Y, Jing F-X, Lou X-H, Yao S-H, Xiang J-Q, Jin Q-H, Zhao J-L (2009) Nano-ELISA for highly sensitive protein detection. Biosens Bioelectron 24:2836–2841

    Article  CAS  PubMed  Google Scholar 

  • Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF (2014) Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held raman scanner. ACS Nano 8:9755–9766

    Google Scholar 

  • Karakiewicz PI, Eastham JA, Graefen M, Cagiannos I, Stricker PD, Klein E, Cangiano T, Schröder FH, Scardino PT, Kattan MW (2005) Prognostic impact of positive surgical margins in surgically treated prostate cancer: multi-institutional assessment of 5831 patients. Urology 66:1245–1250

    Article  PubMed  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci 105:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King FW, Schatz GC (1979) Theory of Raman scattering by molecules adsorbed at electrode surfaces. Model calculations for resonance Raman scattering by an adsorbed diatomic. Chem Phys 38:245–256

    Article  CAS  Google Scholar 

  • Kreibig U, Fragstein CV (1969) The limitation of electron mean free path in small silver particles. Z Phys 224:307–323

    Article  CAS  Google Scholar 

  • Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128:2200–2201

    Google Scholar 

  • Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, WuDe Y, Ren B, Wang ZL, Tian ZQ (2010a) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  PubMed  Google Scholar 

  • Li W, Camargo PHC, Au L, Zhang Q, Rycenga M, Xia Y (2010b) Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angew Chem Int Ed 49:164–168

    Article  CAS  Google Scholar 

  • Li M, Cushing SK, Zhang J, Suri S, Evans R, Petros WP, Gibson LF, Ma D, Liu Y, Wu N (2013) Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7:4967–4976

    Google Scholar 

  • Li M, Kang JW, Dasari RR, Barman I (2014) Shedding light on the extinction-enhancement duality in gold nanostar-enhanced Raman spectroscopy. Angew Chem 126:14339–14343

    Google Scholar 

  • Lim D-K, Jeon K-S, Kim HM, Nam J-M, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  PubMed  Google Scholar 

  • Lim D-K, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol 6:452–460

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R (2011) Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 19:13565–13577

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen R, Feng S, Pan J, Li B, Chen G, Lin S, Li C, Sun L-Q, Huang Z, Zeng H (2012) Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection. J Raman Spectrosc 43:497–502

    Article  CAS  Google Scholar 

  • Linnert T, Mulvaney P, Henglein A (1993) Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate. J Phys Chem 97:679–682

    Article  CAS  Google Scholar 

  • Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  PubMed  Google Scholar 

  • Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112:5605–5617

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42:734–742

    Article  CAS  PubMed  Google Scholar 

  • Lombardi JR, Birke RL, Sanchez LA, Bernard I, Sun SC (1984) The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering. Chem Phys Lett 104:240–247

    Article  CAS  Google Scholar 

  • MacLaughlin CM, Mullaithilaga N, Yang G, Ip SY, Wang C, Walker GC (2013) Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. Langmuir 29:1908–1919

    Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  • Maiti KK, Samanta A, Vendrell M, Soh K-S, Olivo M, Chang Y-T (2011) Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun 47:3514–3516

    Article  CAS  Google Scholar 

  • McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  PubMed  Google Scholar 

  • McMahon JM, Gray SK, Schatz GC (2010) Calculating nonlocal optical properties of structures with arbitrary shape. Phys Rev B 82:035423

    Article  Google Scholar 

  • McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837

    Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82:9058–9065

    Article  CAS  PubMed  Google Scholar 

  • Morton SM, Jensen L (2009) Understanding the molecule−surface chemical coupling in SERS. J Am Chem Soc 131:4090–4098

    Article  CAS  PubMed  Google Scholar 

  • Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159–4161

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Article  CAS  PubMed  Google Scholar 

  • Nolan JP, Sebba DS (2011) Chapter 20—Surface-enhanced Raman scattering (SERS) cytometry. In: Zbigniew Darzynkiewicz EHAOWT, Donald W (eds) Methods in cell biology. Academic Press, Cambridge, MA, pp 515–532

    Google Scholar 

  • Patel IS, Premasiri WR, Moir DT, Ziegler LD (2008) Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc 39:1660–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrecca K, Guiot M-C, Panet-Raymond V, Souhami L (2013) Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neurooncol 111:19–23

    Article  PubMed  Google Scholar 

  • Polascik TJ, Oesterling JE, Partin AW (1999) Prostate specific antigen: a decade of discovery-what we have learned and where we are going. J Urol 162:293–306

    Article  CAS  PubMed  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8:4593–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  CAS  PubMed  Google Scholar 

  • Ramina R, Coelho Neto M, Giacomelli A, Barros E, Vosgerau R, Nascimento A, Coelho G (2010) Optimizing costs of intraoperative magnetic resonance imaging. A series of 29 glioma cases. Acta Neurochir 152:27–33

    Article  PubMed  Google Scholar 

  • Samanta A, Maiti KK, Soh K-S, Liao X, Vendrell M, Dinish US, Yun S-W, Bhuvaneswari R, Kim H, Rautela S, Chung J, Olivo M, Chang Y-T (2011) Ultrasensitive near-infrared raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed 50:6089–6092

    Article  CAS  Google Scholar 

  • Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53:4756–4795

    Article  Google Scholar 

  • Shlipak MG, Ix JH, Bibbins-Domingo K, Lin F, Whooley MA (2008) Biomarkers to predict recurrent cardiovascular disease: the heart and soul study. Am J Med 121:50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivapalan ST, DeVetter BM, Yang TK, van Dijk T, Schulmerich MV, Carney PS, Bhargava R, Murphy CJ (2013) Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought. ACS Nano 7:2099–2105

    Google Scholar 

  • Stamplecoskie KG, Scaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J Phys Chem C 115:1403–1409

    Google Scholar 

  • Steinigeweg D, Schütz M, Salehi M, Schlücker S (2011) Fast and cost-effective purification of gold nanoparticles in the 20–250 nm size range by continuous density gradient centrifugation. Small 7:2443–2448

    Google Scholar 

  • Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553

    Article  CAS  PubMed  Google Scholar 

  • Urayama S, Zou W, Brooks K, Tolstikov V (2010) Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom 24:613–620

    Article  CAS  PubMed  Google Scholar 

  • Valley N, Greeneltch N, Van Duyne RP, Schatz GC (2013) A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J Phys Chem Lett 4:2599–2604

    Google Scholar 

  • Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127:14992–14993

    Article  CAS  PubMed  Google Scholar 

  • Ward AM, Catto JWF, Hamdy FC (2001) Prostate specific antigen: biology, biochemistry and available commercial assays. Ann Clin Biochem 38:633–651

    Article  CAS  PubMed  Google Scholar 

  • Willets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Li W, Zhang Y, Xia Y (2013) Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells. Interface Focus 3(3):20120092

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  • Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  • Xu L, Yan W, Ma W, Kuang H, Wu X, Liu L, Zhao Y, Wang L, Xu C (2015) SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv Mater 27:1706–1711

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Reinhard BM (2010) Identification of tumor cells through spectroscopic profiling of the cellular surface chemistry. J Phys Chem Lett 1:1595–1598

    Article  CAS  Google Scholar 

  • Yu Q, Golden G (2007) Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by SERS. Langmuir 23:8659–8662

    Article  CAS  PubMed  Google Scholar 

  • Zacho J, Yazdanyar S, Bojesen SE, Tybjærg-Hansen A, Nordestgaard BG (2011) Hyperhomocysteinemia, methylenetetrahydrofolate reductase c.677C>T polymorphism and risk of cancer: cross-sectional and prospective studies and meta-analyses of 75,000 cases and 93,000 controls. Int J Cancer 128:644–652

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci 106:13511–13516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc 58:33–40

    Google Scholar 

  • Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Ding F, Chen H, Ding W, Zhang W, Chou SY (2012) Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal Chem 84:4489–4495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant No. 104C3562-1 and the Food and Drug Administration (FDA), Ministry of Health and Welfare, Taipei, Taiwan, under Grant No. 105TFDA-A-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kien Voon Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kong, K.V. (2017). SERS Biosensing and Bioimaging: Design and Applications in Cancer Diagnostics. In: Chandra, P., Tan, Y., Singh, S. (eds) Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4726-8_15

Download citation

Publish with us

Policies and ethics