Skip to main content

Role of Hydrolytic Enzymes of Rhizoflora in Biocontrol of Fungal Phytopathogens: An Overview

  • Chapter
  • First Online:
Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

Microbial community in the rhizosphere produces a variety of hydrolytic enzymes that are responsible for the degradation of various components of fungal pathogens. The extracellular hydrolytic enzymes excreted by soil rhizobia degrade cell wall components of plant pathogenic microbes. The enzymes of these types are able to breakdown glycosidic linkages present in the polysaccharide of the cell wall of phytopathogens. In this regard, plant growth-promoting rhizobacteria (PGPR) are known to colonize rhizosphere and enhance plant growth through different mechanisms that include (i) plant growth promotion and (ii) biological control of plant disease. Plant growth promotion mechanisms include mineralization of insoluble substances, production of plant growth hormones, biological nitrogen fixation, and promotion of root growth. Biocontrol mechanism involves competition, antibiosis, parasitism, induction of systemic acquired resistance (SAR), induction of systemic resistance (ISR), soil suppressiveness, and production of various antifungal metabolites; hydrolytic enzymes such as chitinase, glucanase, protease, and cellulase; and antibiotics such as 2,4-diacetyl phloroglucinol (DAPG), amphisin, oomycin A, hydrogen cyanide, phenazine, pyoluteorin, pyrrolnitrin, cyclic lipopeptides, oligomycin A, zwittermicin A, kanosamine, and xanthobaccin. Production of hydrolytic enzymes by PGPR is an important mechanism directed against phytopathogens for sustainable plant disease management. These enzymes break down the cell wall of fungal pathogens causing cell death. This review focuses on the different aspects of various hydrolytic enzymes produced by rhizoflora and their role in sustainable biocontrol of phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adinarayana K, Ellaiah P, Prasad DS (2003) Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS Pharm Sci Tech 4(4):440–448

    Article  Google Scholar 

  • Anwar A, Saleemuddin M (1998) Alkaline proteases – a review. Bioresour Technol 64(3):175–183

    Article  CAS  Google Scholar 

  • Araujo FF (2008) Inoculacao de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodao. Cienc Agrotec 32:456–462

    Article  Google Scholar 

  • Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA (2006) Production and characterisation of cellulase by Bacillus Pumilus EB3. Int J Eng Technol 3(1):47–53

    Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khalig A (2002) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:146–151

    Google Scholar 

  • Asker MM, Mahmoud MG, El Shebwy K, el Aziz MSA (2013) Purification and characterization of two thermostable protease fractions from Bacillus megaterium. J Genet Eng Biotechnol 11:103–109

    Article  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, San Francisco

    Google Scholar 

  • Banik RM, Prakash M (2004) Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol Res 159:135–140

    Article  CAS  PubMed  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Barnett HL, Binder FL (1973) The fungal host-parasite relationship. Annu Rev Phytopathol 11:273–292

    Article  Google Scholar 

  • Barriuso J, Pereyra MT, Lucas García JA et al (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. Microbial Ecol 50:82–89

    Article  CAS  Google Scholar 

  • Barriuso J, Ramos B, Lucas JA et al (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:978-3-527-31901-5

    Google Scholar 

  • Basavaraj I, Patagundi CT, Shivasharan KBB (2014) Isolation and characterization of cellulase producing bacteria from soil. Int J Curr Micro Appl Sci 3(5):59–69

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Beg QK, Gupta R (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enz Microb Technol 32:294–304

    Article  CAS  Google Scholar 

  • Benhamou N (2004) Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit-against Penicillium digitatum, the casual agent of green mold: a comparison with-the effect of chitosan. Phytopathology 94:693–705

    Article  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28:799–808

    Article  PubMed  Google Scholar 

  • Budi SW, van Tuinen D, Arnould C et al (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soilborne pathogenic bacteria. Appl Soil Ecol 15:191–199

    Article  Google Scholar 

  • Chang WT, Chen M, Wang SL (2010) An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World J Microbiol Biotechnol 26:945–950

    Article  CAS  Google Scholar 

  • Chet I (1987) Trichoderma-application, mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Chet I, Hornby D (1990) Biological control of soil-borne plant pathogens with fungal antagonists in combination with soil treatments. In: Hornby D (ed) Biological control of soil-borne plant pathogens. Cab International, Wallingford, pp 15–25

    Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Kubicek CP, Druzhinina IS (eds) The Mycota IV: environmental and microbial relationships. Springer-Verlag, Berlin, pp 165–184

    Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cox PW, Hooley P (2009) Hydrophobins: new prospects for biotechnology. Fungal Biol Rev 23:40–47

    Article  Google Scholar 

  • De La Cruz J, Rey M, Lorca JM et al (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859–867

    Article  PubMed  Google Scholar 

  • Donohue TM, Osna NA (2003) Intracellular proteolytic systems in alcohol-induced tissue injury. Alcohol Res Health 27:317–324

    PubMed  Google Scholar 

  • Doster MA, Schnathorst WC (1985) Effects of leaf maturity and cultivar resistance on development of the powdery mildew fungus on grapevines. Phytopathology 75:318–321

    Article  Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Felse AP, Panda T (1999) Production of microbial chitinases. Bioprocess Eng 23:127–134

    Article  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Appl Soil Ecol l40:182–188

    Article  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR (1998) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  Google Scholar 

  • Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP (2007) Caracterizacao de rizobios isolados de Jacatupe cultivado em solo salino no Estado de Pernanbuco, Brasil. Bragantia 66(3):497–504

    Article  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a ß-1, 3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elas JD (2004) Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 47:51–64

    Article  CAS  PubMed  Google Scholar 

  • Gay PA, Saikurnar KV, Cleveland TE, Tuzun S (1992) Antagonistic effect of chitino1ytic bacteria against toxin producing fungi. Phytopathology 82:1074

    Google Scholar 

  • Gerze A, Omay D, Guvenilir Y (2005) Partial purification and characterization of protease enzyme from Bacillus subtilis megatherium. In: Davison BH, Evans B, Finkelstein M, Mcmillan JD (eds) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, New York, pp 335–345

    Chapter  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson BO (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enz Microb Technol 32:519–524

    Article  CAS  Google Scholar 

  • Giesbert S, Schuerg T, Scheele S, Tudzynski P (2008) The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol Plant Pathol 9:317–327

    Article  CAS  PubMed  Google Scholar 

  • Giesler LJ, Yuen GY (1998) Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot 17:509–513

    Article  Google Scholar 

  • Gooday GW (1995) Cell walls. In: Gow NA, Gadd GM (eds) Growing fungus. Springer Science & Business Media, Dordrecht, pp 43–62

    Chapter  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Gupta A, Roy I, Patel RK, Singh SP, Khare SK, Gupta MN (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromat A 1075:103–108

    Article  CAS  Google Scholar 

  • Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M (2009) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour Technol 100:3366–3373

    Article  CAS  PubMed  Google Scholar 

  • Haran S, Schickler H, Oppenheim A, Chet I (1995) New components of the chitinolytic system of Trichoderma harzianum. Mycol Res 99:441–446

    Article  CAS  Google Scholar 

  • Harman GE, Hayes CK, Lorito M et al (1993) Chitinolytic enzymes of Trichoderma harzianum : purification of chitobiosidase and endochitinast. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Havukkala I (1991) Chitinolytic enzymes and plant pests. In: Ilag LL, Raymundo AK (eds) Biotechnology in the Philippines towards the year 2000, proceedings of the Second Asia-Pacific Biotechnology Congress. SEARCA, University of the Philippines, Los Banos, pp 127–140

    Google Scholar 

  • Heltoft P, Brierley JL, Lees AK, Sullivan L, Lynott J, Hermansen A (2016) The relationship between soil inoculum and the development of Fusarium dry rot in potato cultivars Asterix and Saturna. Eur J Plant Pathol 146:1–4. doi:10.1007/s10658-016-0946-2

    Article  Google Scholar 

  • Heydari A (2007) Biological control of turfgrass fungal diseases. In: Pessarakli M (ed) Turfgrass management and physiology. CRC Press, Boca Raton

    Google Scholar 

  • Heydari A, Misaghi IJ, Balestra GM (2007) Pre-emergence herbicides influence the efficacy of fungicides in controlling cotton seedling damping off in the field. Int J Agric Res 2:1049–1053

    Article  CAS  Google Scholar 

  • Hurst PL, Nielsen J, Sullivan PA, Shepherd MG (1977) Purification and properties of a cellulase from Aspergillus niger. Biochem J 165:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illakkiam D, Anuj NL, Ponraj P, Shankar M, Rajendhran J, Gunasekaran P (2013) Proteolytic enzyme mediated antagonistic potential of Pseudomonas aeruginosa against Macrophomina phaseolina. Indian J Exp Biol 51:1024–1031

    CAS  PubMed  Google Scholar 

  • Islam MT, Yasuyuki H, Abhinandan D, Toshiaki I, Santoshi T (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is-linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones IDG, Grady KL, Suslow TV, Bedbrook IR (1986) Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J 5:467–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joo HS, Chang CS (2005) Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J Appl Microbiol 98:491–497

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36:185–189

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Proceedings of the fourth international conference on plant pathogen bacteria, vol 2 INRA, pp 879–882

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induce systemic resistance and promotion of growth by Bacillus sp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kramer KJ, Muthukrishnan S, Johnson L, White F (1997) Chitinases for insect control. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants. Taylor and Francis Publishers, Bristol, pp 185–193

    Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Lee SM, Koo YM (2001) Pilot-scale production of cellulase using T. reesei rut C-30 in fed-batch mode. Microb Biotechnol 11:229–233

    CAS  Google Scholar 

  • Li S, Rupe J, Chen P, Shannon G, Wrather A, Boykin D (2015) Evaluation of diverse soybean germplasm for resistance to Phomopsis seed decay. Plant Dis 99:1517–1525

    Article  CAS  Google Scholar 

  • Li-Jung Y, Hsin-Hung L, Zheng-Rong X (2010) Purification and characterization of a cellulase from Bacillus Subtilis YJ1. J Mar Sci Technol 18:466–471

    Google Scholar 

  • Logemann J, Schell J (1993) The impact of biotechnology on plant breeding, or how to combine increases in agricultural productivity with an improved protection of the environment. In: Chet I (ed) Biotechnology in plant disease control. Wiley-Liss, New York, pp 1–14

    Google Scholar 

  • Lorito M (1998) Chitinolytic enzymes and their genes. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 73–99

    Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A, Woo SL, Harman GE (1994) Purification, characterization, and synergistic activity of a glucan 1, 3-β-glucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398–405

    Article  CAS  Google Scholar 

  • Lucas García J, Probanza A, Ramos B, Gutiérrez Manero FJ (2001) Genetic variability of rhizobacteria from wild populations of Lupinus species based on PCR-RAPDs. J Plant Nutr Soil Sci 164:1–7

    Article  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek: Int J Gen Mol Microbiol 86:1–25

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063

    Article  CAS  Google Scholar 

  • Maloy OC (1993) Plant disease control: principles and practice. Wiley, New York

    Google Scholar 

  • Manocha MS, Balasubramanian R (1994) Fungal chitinases: their properties and roles in morphogenesis, mycoparasitism and control of pathogenic fungi. In: Petrini O, Ouel-lette GB (eds) Host wall alterations by parasitic fungi. APS Press, St. Paul, pp 81–90

    Google Scholar 

  • Manocha MS, Sahai AS (1993) Mechanisms of recognition in necrotrophic and biotrophic mycoparasites. Can J Microbiol 39:269–275

    Article  CAS  PubMed  Google Scholar 

  • Mao W, Lewis JA, Hebbar PK, Lumsden RD (1997) Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis 81:450–454

    Article  Google Scholar 

  • Maria Teresa FB, Adilson LL, Cirano JU (2003) Purification and characterization of an exo-β -1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219:81–85

    Article  CAS  Google Scholar 

  • Maurer KH (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334

    Article  CAS  PubMed  Google Scholar 

  • Misra AK, Garg N, Yadav KK (2016) First report of shell soft rot of Bael (Aegle marmelos) caused by Syncephalastrum racemosum in North India. Plant Dis PDIS-12 100:1779

    Article  Google Scholar 

  • Muhammad I, Safdar A, Syed Q, Nadeem M (2012) Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk J Biochem 37:287–293

    Article  CAS  Google Scholar 

  • Müller J (2015) Rarer downy mildews, rusts and smuts of the Czech and Slovak Republics. Czech Mycol 67:69–83

    Google Scholar 

  • Noronha EF, Ulhoa CJ (1996) Purification and characterization of an endo-β-1,3-glucanase from Trichoderma harzianum. Can J Microbiol 42:1039–1044

    Article  CAS  Google Scholar 

  • Noronha EF, Ulhoa CJ (2000) Characterization of a 29-kDa β-1,3-glucanase from Trichoderma harzianum. FEMS Microbiol Lett 183:119–123

    CAS  PubMed  Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Nat Acad Sci 97:7905–7910

    Article  PubMed  PubMed Central  Google Scholar 

  • Odeniyi OA, Onilude AA, Ayodele MA (2009) Production characteristics and properties of cellulase/polygalacturonase by a Bacillus coagulans strain from a fermenting palm fruit industrial residue. Afr J Microbiol Res 3:407–417

    CAS  Google Scholar 

  • Oppenheim AB, Chet I (1992) Cloned chitinases in fungal plant pathogen control strategies. Trends Biotechnol 10:392–394

    Article  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr 1–25, doi: 10.1094/PHI-A-2006-1117-02

  • Pane C, Piccolo A, Spaccini R, Celano G, Villecco D, Zaccardelli M (2013) Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl Soil Ecol 65:43–51

    Article  Google Scholar 

  • Pang Z, Otaka K, Suzuki Y, Goto K, Ohnishi M (2004) Purification and characterization of an endo-1,3-β-glucanase from Arthrobacter sp. J Biol Macromol 4:57–66

    CAS  Google Scholar 

  • Pietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325

    Article  PubMed  Google Scholar 

  • Ran LX, Liu CI, Wu GJ, van Loon LC, Bakker PAHM (2005) Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol Control 32:111–120

    Article  Google Scholar 

  • Sareen R, Mishra P (2008) Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37. Appl Microbiol Biotechnol 79:399–405

    Article  CAS  PubMed  Google Scholar 

  • Sarvanakumar D, Vijaykumar C, Kumar N, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediate saline resistance in groundnut plants. J Appl Microbiol 102:1283–1292

    Article  CAS  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2009) Siderophore producing A. faecalis more biocontrol potential vis-a`-vis chemical fungicide. Curr Microbiol 58:47–51

    Article  CAS  PubMed  Google Scholar 

  • Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas sp. vis-a`-vis organophosphorus fungicide. Indian J Microbiol 51:266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayyed RZ, Patel DC, Patel PR (2007) Plant growth promoting potential of P solubilizing Pseudomonas sp. occurring in acidic soil of Jalgaon. Asian J Microbiol Biotechnol Environ Sci 4:925–928

    Google Scholar 

  • Sayyed RZ, Gangurde NS, Patel PR, Josh SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for plant growth promotion by Arachis hypogaea. Indian J Biotechnol 9:302–307

    CAS  Google Scholar 

  • Sayyed RZ, Reddy MS, Kumar KV et al (2012) Potential of plant growth-promoting rhizobacteria for sustainable agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 287–313

    Chapter  Google Scholar 

  • Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR (2013) Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin/Heidelberg, pp 449–471

    Chapter  Google Scholar 

  • Sayyed RZ, Patel PR, Shaikh SS (2015) Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian J Exp Biol 53:116–123

    CAS  PubMed  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Shaikh SS, Sayyed RZ (2015) Role of plant growth promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 337–351. doi:10.1007/978-81-322-2068-8_18

    Google Scholar 

  • Shaikh SS, Patel PR, Patel SS, Nikam SD, Rane TU, Sayyed RZ (2014) Production of biocontrol traits by banana field fluorescent pseudomonads and their comparison with chemical fungicides. Indian J Exp Biol 52:917–920

    CAS  PubMed  Google Scholar 

  • Shaikh SS, Sayyed RZ, Reddy MS (2016) Plant growth promoting rhizobacteria: a sustainable approach to agro-ecosystem. In: Hakeem KR et al (eds) Plant, soil and microbes – interactions and implications in crop science. Springer international publishing AG, Cham, pp 181–201. doi:10.1007/978-3-319-27455-3_10

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva VN, Silva LESF, Figueiredo MVB (2006) Atuacao de rizobios com rizobacterias promotoras de crescimento em plantas na cultura do caupi (Vigna unguiculata L. Walp). Acta Sci Agron 28:407–412

    Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1-3-β-D-glucanase and 1,3;1-4-β-D-glucanase. Crit Rev Plant Sci 13:325–387

    CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of a Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant-Microbe Interact 6:293–298

    Article  CAS  Google Scholar 

  • Skujins JJ, Potgieter HJ, Alexander M (1965) Dissolution of funga1 cell walls by a Streptomycete chitinase and ß-(1,3)-glucanase. Arch Biochem Biophys 111:358–364

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soil borne diseases by Serratia marcescens strain B2. Plant Dis 84:334–340

    Article  Google Scholar 

  • Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007) Fungal cell wall degrading enzyme-producing bacterium enhances the biocontrol efficacy of antibiotic-producing bacterium against cabbage yellows/Ein Zellwand zersetzendes Bakterium steigert die antagonistische Wirkung eines Antibiotika bildenden Bakteriums gegenüber der Fusarium-Kohlwelke. J Plant Dis Protec, 108–112

    Google Scholar 

  • Sookkheo B, Sinchaikul S, Phutrakul S, Chen ST (2000) Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expr Purif 20:142–151

    Article  CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Phytopathology 43

    Google Scholar 

  • Sundheim L (1992) Effect of chitinase encoding genes in biocontrol Pseudomonas spp. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases: progress and challenges for the future. Plenum, New York, pp 331–333

    Chapter  Google Scholar 

  • Thomas JUNG, Nechwatal J, Cooke DE et al (2003) Phytophthora pseudosyringae sp. nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycol Res 107:772–789

    Article  CAS  Google Scholar 

  • Uchida J, Zhong S, Killgore E (2006) First report of a rust disease on ohia caused by Puccinia psidii in Hawaii. Plant Dis 90:524–524

    Article  Google Scholar 

  • Vazquez-Garcidueiias S, Leal-Morales CA, Herrera-Estrella A (1998) Analysis of the ß-l,3-g1ucanolytic system of the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 64:1442–1446

    Google Scholar 

  • Vega K, Kalkum M (2011) Chitin, chitinase responses, and invasive fungal infections. Int J Microbiol, Vol 2012

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other fungi. Phytopathology 22:837–845

    Google Scholar 

  • Wingfield MJ, Jacobs A, Coutinho TA, Ahumada R, Wingfield BD (2002) First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathol 51:397–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Sayyed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jadhav, H.P., Shaikh, S.S., Sayyed, R.Z. (2017). Role of Hydrolytic Enzymes of Rhizoflora in Biocontrol of Fungal Phytopathogens: An Overview. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_9

Download citation

Publish with us

Policies and ethics