Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 540 Accesses

Abstract

This chapter presents an overview of commonly used pulsed generators in bioelectrics. The concept of pulsed power is discussed in Sect. 15.1. One of the key components of ultrashort pulse generator is the switch that is capable of closing in time of nanoseconds or subnanoseconds. A variety of switches, including gas spark gap switches and MOSFETs, can be used (Sect. 15.2). Besides the switches, the circuits that are often used in producing ultrashort pulses are discussed in Sect. 15.3. Finally, when ultra-high voltage pulses are needed, an air-core transformer or a Marx generator can be used, which are discussed in Sect. 15.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker RJ, Johnson BP (1992) Stacking power MOSFETs for use in high speed instrumentation. Rev Sci Instrum 63:5799–5801

    Article  Google Scholar 

  • Baker RJ, Johnson BP (1993) Series operation of power MOSFETs for high speed, high voltage switching applications. Rev Sci Instrum 64:1655–1656

    Article  Google Scholar 

  • Barkhordarian V (1997) Application Note AN-1084 Power MOSFET Basics

    Google Scholar 

  • Batarseh I (2011) Power electronics handbook. Butterworth-Heinemann, Burlington

    Google Scholar 

  • Baum CE, Baker WL, Prather WD, Lehr JM, Loughlin JPO, Giri DV, Smith ID, Altes R, Fockler J, McLemore DM et al (2004) JOLT: a highly directive, very intensive, impulse-like radiator. Proc IEEE 92:1096–1109

    Article  Google Scholar 

  • Braginskii SI (1958) Theory of the development of a spark channel. Soviet Phys JETP 34:1548–1557

    MathSciNet  Google Scholar 

  • Brown D, Martin D (1987) Subnanosecond high-voltage pulse generator. Rev Sci Instrum 58:1523–1529

    Article  Google Scholar 

  • Camp JT (2012) Synergistic effect of subnanosecond pulsed electric fields and temperature on the viability of biological cells. Ph.D. thesis, Norfolk, VA: Old Dominion University

    Google Scholar 

  • Canacsinh H, Redondo LM, Silva JF (2008) New solid-state Marx topology for bipolar repetitive high-voltage pulses. In: IEEE power electronics specialists conference, 15–19 June 2008, pp 791–795

    Google Scholar 

  • Carey WJ, Mayes JR (2002) Marx generator design and performance. In: Conference Record of the Twenty-Fifth International Power Modulator Symposium and High-Voltage Workshop, 30 June-3 July 2002, pp. 625–628

    Google Scholar 

  • E. Kuffel WSZaJK. 2000. High Voltage Engineering Fundamentals: Newnes.

    Google Scholar 

  • Engel TG, Donaldson AL, Kristiansen M (1989) The pulsed discharge arc resistance and its functional behavior. IEEE Trans Plasma Sci 17:323–329

    Article  Google Scholar 

  • Fitch RA (1971) Marx - and Marx-Like—high-voltage generators. IEEE Trans Nucl Sci 18:190–198

    Article  Google Scholar 

  • Francis JF (1976) High voltage pulse techniques. Plasma Laboratory, Texas Tech University, Pulsed Power Lecture Series

    Google Scholar 

  • Frey W, Sack M, Wuestner R, Mueller G (2009) Gas-insulated self-breakdown spark gaps: aspects on low-scattering and long-lifetime switching. Acta Physica Polonica A 115

    Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  Google Scholar 

  • Frost CA, Martin TH, Patterson PE, Rinehart LF, Rohwein GJ, Roose LD, Aurand JF (1993) Ultrafast Gas Switching Experiments. In: 9th IEEE international pulsed power conference, 21–23 June 1993, p 491

    Google Scholar 

  • Godignon P, Soler V, Cabello M, Montserrat J, Rebollo J, Knoll L, Bianda E, Mihaila A (2017) New trends in high voltage MOSFET based on wide band gap materials. In: 2017 international semiconductor conference (CAS), 11–14 Oct 2017, pp 3–10

    Google Scholar 

  • Grekhov IV, Korotkov SV, Stepaniants AL, Khristyuk DV, Voronkov VB, Aristov YV (2005) High-power semiconductor-based nano and subnanosecond pulse generator with a low delay time. IEEE Trans Plasma Sci 33:1240–1244

    Article  Google Scholar 

  • Heeren T, Camp JT, Kolb JF, Schoenbach KH, Katsuki S, Akiyama H (2007) 250 kV sub-nanosecond pulse generator with adjustable pulse-width. IEEE Trans Dielectr Electr Insul 14:884–888

    Article  Google Scholar 

  • Heffernan LK, Curry RD, McDonald KF (2005) A fast, 3MV marx generator for megavolt oil switch testing with an integrated abramyan network design. In: 2005 IEEE pulsed power conference, 13–15 June 2005, pp 596–599

    Google Scholar 

  • Huiskamp T, Heesch EJMv, Pemen AJM (2015) Final implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source. IEEE Trans Plasma Sci 43:444–451

    Google Scholar 

  • Husain E, Nema RS (1982) Analysis of Paschen Curves for air, N2 and SF6 using the townsend breakdown equation. IEEE Trans Electr Insulation EI-17:350–353

    Google Scholar 

  • Hussey TW, Davis KJ, Lehr JM, Roderick NF, Pate RC, Kunhardt E (1999) Dynamics of nanosecond spark-gap channels. In: 12th IEEE international pulsed power conference, 27–30 June 1999, pp 1171–1174

    Google Scholar 

  • Ivanov BV, Smirnov AA, Shevchenko SA (2016) A study of charge losses in 4H-SiC drift step recovery diodes (DSRD). In: 2016 IEEE NW Russia young researchers in electrical and electronic engineering conference (EIConRusNW), pp 51–52, 2–3 Feb 2016

    Google Scholar 

  • James Nilsson SR (2018) Electric circuits, 11th ed. Pearson

    Google Scholar 

  • Katsuki S, Takano D, Namihira T, Akiyama H, Majima T (2001) Repetitive operation of water-filled Blumlein generator. Rev Sci Instrum 72:2759–2763

    Article  Google Scholar 

  • Kolb JF, Joshi RP, Xiao S, Schoenbach KH (2008) Streamers in water and other dielectric liquids. J Phys D Appl Phys 41:234007

    Article  Google Scholar 

  • Korioth JL, Copeland RP, Scholfield DW (1999) A novel super low inductance primary ring utilized in a pulsed dual resonant tuned transformer. In: 12th IEEE international pulsed power conference, vol 2, pp 811–814, 27–30 June 1999

    Google Scholar 

  • Krishnaswamy P, Kuthi A, Vernier PT, Gundersen MA (2007) Compact Subnanosecond Pulse Generator Using Avalanche Transistors for Cell Electroperturbation Studies. IEEE Trans Dielectr Electr Insul 14:873–877

    Article  Google Scholar 

  • Lehr JM, Baum CE, Prather WD, Torres RJ (1998) Fundamental physical considerations for ultrafast spark gap switching. Ultra-Wideband Short-Pulse Electromagnetics 4 (IEEE Cat. No.98EX112), pp 11–20, 14–19 June 1999

    Google Scholar 

  • Levinson S, Kunhardt EE, Kristiansen M, Guenther AH (1979) Simulation of inductive and electromagnetic effects associated with single and multichannel triggered spark gaps. In: 2nd IEEE international pulsed power conferences, United States, pp 433–436

    Google Scholar 

  • Lim SW, Cho CH, Ryoo HJ, Kim JS, Rim GH, Jin YS (2011) Fabrication and operation testing of a dual resonance pulse transformer for PFL pulse charging. J Korean Phys Soc 59:3679–3682

    Article  Google Scholar 

  • Lundin R (1985) A handbook formula for the inductance of a single-layer circular coil. Proc IEEE 73:1428–1429

    Article  Google Scholar 

  • Martin JC (1992) Nanosecond pulse techniques. Proc IEEE 80:934–945

    Article  Google Scholar 

  • Martin TH, Seamen JF, Jobe DO (1993) Energy losses in switches. In: 9th IEEE pulsed power conference, Albuquerque, NM, USA, p 463, 21–23 June 1993

    Google Scholar 

  • Miller SL, Ebers JJ (1955) Alloyed junction avalanche transistors. Bell Syst Tech J 34:883–902

    Article  Google Scholar 

  • Moran SL, Hardesty LW (1991) High-repetition-rate hydrogen spark gap. IEEE Trans Electron Devices 38:726–730

    Article  Google Scholar 

  • Morrison RW, Smith AM (1972) Overvoltage and breakdown patterns of fast marx generators. IEEE Trans Nucl Sci 19:20–31

    Article  Google Scholar 

  • Ng KK (2009) Complete guide to semiconductor devices. Wiley, New York

    Book  Google Scholar 

  • P. A. Pincosy PPaWRC (1992) High-pressure gas switch for a wideband source. In: 9th international conference on high-power particle beams. IEEE, Washington, DC

    Google Scholar 

  • Persephonis P, Vlachos K, Georgiades C, Parthenios J (1992) The inductance of the discharge in a spark gap. J Appl Phys 71:4755–4762

    Article  Google Scholar 

  • Petrella RA, Xiao S, Katsuki S (2016) An air core pulse transformer with a linearly integrated primary capacitor bank to achieve ultrafast charging. IEEE Trans Dielectr Electr Insul 23:2443–2449

    Article  Google Scholar 

  • Raizer YP. 1997. Gas Discharge Physics Berlin: Springer.

    Google Scholar 

  • Reed JL (1988) Greater voltage gain for Tesla-transformer accelerators. Rev Sci Instrum 59:2300–2301

    Article  Google Scholar 

  • Rein H, Zahn M (1975) Subnanosecond-pulse generator with variable pulsewidth using avalanche transistors. Electron Lett 11:21–23

    Article  Google Scholar 

  • Rohwein GJ (1979) A three megavolt transformer for PFL pulse charging. IEEE Trans Nucl Sci 26:4211–4213

    Article  Google Scholar 

  • Ryan HA, Hirakawa S, Yang E, Zhou C, Xiao S (2018) High-voltage, multiphasic, nanosecond pulses to modulate cellular responses. IEEE Trans Biomed Circuits Syst 12:338–350

    Article  Google Scholar 

  • Schoenbach K, Kolb J, Xiao S, Katsuki S, Minamitani Y, Joshi R (2008a) Electrical breakdown of water in microgaps. Plasma Sources Sci Technol 17:024010

    Article  Google Scholar 

  • Schoenbach K, Xiao S, Joshi R, Camp J, Heeren T, Kolb JF, Beebe S (2008b) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36:414–422

    Article  Google Scholar 

  • Shotts Z, Rose F, Merryman S, Kirby R (2005) Design methodology for dual resonance pulse transformers. In: IEEE pulsed power conference, Monterey, CA, USA, pp 1117–1120, 13–15 June 2005

    Google Scholar 

  • Smith PW (2002) Transient electronics: pulsed circuit technology. Wiley, London

    Google Scholar 

  • Sun Y, Xiao S, White JA, Kolb JF, Stacey M, Schoenbach KH (2007) Compact, nanosecond, high repetition rate, pulse generator for bioelectric studies. IEEE Trans Dielectr Electr Insul 14:863–870

    Article  Google Scholar 

  • Woodworth JR, Chalenski D, Sarkisov GS, Blickem JR (2005) 170-kV laser-triggered water switch experiments. IEEE Trans Plasma Sci 33:2051–2059

    Article  Google Scholar 

  • Xiao S, Zhou C, Yang E, Rajulapati SR (2018) Nanosecond bipolar pulse generators for bioelectrics. Bioelectrochemistry 123:77–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Xiao .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, S. (2021). Pulsed Power Generators. In: Ultrashort Electric Pulse Effects in Biology and Medicine. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5113-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5113-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5112-8

  • Online ISBN: 978-981-10-5113-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics