Skip to main content

Animal Tests to Determine the Health Risks of Indoor Air Pollutants

  • Living reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 73 Accesses

Abstract

Public awareness of the importance of air quality in general, and of indoor air in particular, has grown over the past few decades. Sick building syndrome was an early indicator of this awareness, but harmful chemicals are still used in the manufacture of building materials, furniture, carpets, and other items used daily. Since people spend a significant amount of time indoors, extensive attention is being paid to health problems caused by indoor air pollutants. By examining changes in biomarker levels after an animal is exposed to indoor air pollutants, animal tests have been shown to be an effective way to evaluate health impacts, and to understand the underlying toxicological mechanisms, before examining the impacts on people. In this chapter, we discuss the fundamental principles of animal testing and describe the latest progress in the study of health impacts of indoor air pollutants. We review a number of experiments where laboratory animals are exposed to certain environmental pollutants and present their findings. Detailed descriptions of the toxicity mechanisms and the corresponding intervention measures are given, and strategies for the prevention and treatment of related diseases caused by indoor pollutants are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Halim RE (2005) Contributions of Ibn Zuhr (Avenzoar) to the progress of surgery: a study and translations from his book Al-Taisir. Saudi Med J 26(9):1333–1339

    Google Scholar 

  • Abdel-Halim RE (2006) Contributions of Muhadhdhab Al-Deen Al-Baghdadi to the progress of medicine and urology. A study and translations from his book Al-Mukhtar. Saudi Med J 27(11):1631–1641

    Google Scholar 

  • Andersen ML, Winter LMF (2019) Animal models in biological and biomedical research – experimental and ethical concerns. An Acad Bras Cienc 91(suppl 1):e20170238

    Article  Google Scholar 

  • Artegiani B, Clevers H (2018) Use and application of 3D-organoid technology. Hum Mol Genet 27(R2):R99–R107

    Article  CAS  Google Scholar 

  • Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F (2019) Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 39(12):1610–1622

    Article  CAS  Google Scholar 

  • Barakat R, Lin PP, Rattan S, Brehm E, Canisso IF, Abosalum ME, Flaws JA, Hess R, Ko C (2017) Prenatal exposure to DEHP induces premature reproductive senescence in male mice. Toxicol Sci 156(1):96–108

    CAS  Google Scholar 

  • Barré-Sinoussi F, Montagutelli X (2015) Animal models are essential to biological research: issues and perspectives. Future Sci OA 1(4):Fso63

    Article  Google Scholar 

  • Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ (2007) The multitude and diversity of environmental carcinogens. Environ Res 105(3):414–429

    Article  CAS  Google Scholar 

  • Bernardini L, Barbosa E, Charão MF, Goethel G, Muller D, Bau C, Steffens NA, Santos Stein C, Moresco RN, Garcia SC, Souza Vencato M, Brucker N (2020) Oxidative damage, inflammation, genotoxic effect, and global DNA methylation caused by inhalation of formaldehyde and the purpose of melatonin. Toxicol Res (Camb) 9(6):778–789

    Article  Google Scholar 

  • Bode D, Cull AH, Rubio-Lara JA, Kent DG (2021) Exploiting single-cell tools in gene and cell therapy. Front Immunol 12:702636

    Article  CAS  Google Scholar 

  • Bono R, Munnia A, Romanazzi V, Bellisario V, Cellai F, Peluso MEM (2016) Formaldehyde-induced toxicity in the nasal epithelia of workers of a plastic laminate plant. Toxicol Res (Camb) 5(3):752–760

    Article  CAS  Google Scholar 

  • Bornehag CG, Nanberg E (2010) Phthalate exposure and asthma in children. Int J Androl 33(2):333–345

    Article  CAS  Google Scholar 

  • Casal-Mouriño A, Valdés L, Barros-Dios JM, Ruano-Ravina A (2019) Lung cancer survival among never smokers. Cancer Lett 451:142–149

    Article  CAS  Google Scholar 

  • Chaix A, Lin T, Le HD, Chang MW, Panda S (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29(2):303–319

    Article  CAS  Google Scholar 

  • Chen J, Moir D, Whyte J (2012) Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey. Radiat Prot Dosim 152(1–3):9–13

    Article  CAS  Google Scholar 

  • Chen H, Chen N, Li F, Sun L, Du J, Chen Y, Cheng F, Li Y, Tian S, Jiang Q, Cui F, Tu Y (2020) Repeated radon exposure induced lung injury and epithelial-mesenchymal transition through the PI3K/AKT/mTOR pathway in human bronchial epithelial cells and mice. Toxicol Lett 334:4–13

    Article  CAS  Google Scholar 

  • Cogliano VJ, Grosse Y, Baan RA, Straif K, Secretan MB, El Ghissassi F (2005) Meeting report: summary of IARC monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanol. Environ Health Perspect 113(9):1205–1208

    Article  CAS  Google Scholar 

  • Cohen B, Loew F (2002) Laboratory animal medicine: historical perspectives. Lab Anim Med:1–17

    Google Scholar 

  • Cong LH, Li T, Wang H, Wu YN, Wang SP, Zhao YY, Zhang GQ, Duan J (2020) IL-17A-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting PI3K/Akt/mTOR-mediated autophagy. J Cell Mol Med 24(15):8532–8544

    Article  CAS  Google Scholar 

  • Corrò C, Novellasdemunt L, Li VSW (2020) A brief history of organoids. Am J Phys Cell Phys 319(1):C151–C165

    Google Scholar 

  • Costa LG, Cole TB, Dao K, Chang YC, Garrick JM (2019) Developmental impact of air pollution on brain function. Neurochem Int 131:104580

    Article  CAS  Google Scholar 

  • Dan S, Pant M, Kaur T, Pant S (2020) Toxic effect of formaldehyde: a systematic review. Int Res J Mod Eng Technol Sci 2:179–189

    Google Scholar 

  • Davel AP, Lemos M, Pastro LM, Pedro SC, De André PA, Hebeda C, Farsky SH, Saldiva PH, Rossoni LV (2012) Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology 295(1–3):39–46

    Article  CAS  Google Scholar 

  • Ding Y, Gao K, Liu Y, Mao G, Chen K, Qiu X, Zhao T, Yang L, Feng W, Wu X (2019) Transcriptome analysis revealed the mechanism of the metabolic toxicity and susceptibility of di-(2-ethylhexyl)phthalate on adolescent male ICR mice with type 2 diabetes mellitus. Arch Toxicol 93(11):3183–3206

    Article  CAS  Google Scholar 

  • Dockery DW, Stone PH (2007) Cardiovascular risks from fine particulate air pollution. N Engl J Med 356(5):511–513

    Article  CAS  Google Scholar 

  • Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23(3):223–229

    Article  Google Scholar 

  • Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, Sun Z (2017) Multi-organ toxicity induced by fine particulate matter PM(2.5) in zebrafish (Danio rerio) model. Chemosphere 180:24–32

    Article  CAS  Google Scholar 

  • Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410

    Article  CAS  Google Scholar 

  • Federico A, Serra A, Ha MK, Kohonen P, Choi J-S, Liampa I, Nymark P, Sanabria N, Cattelani L, Fratello M, Kinaret PAS, Jagiello K, Puzyn T, Melagraki G, Gulumian M, Afantitis A, Sarimveis H, Yoon T-H, Grafström R, Greco D (2020) Transcriptomics in toxicogenomics, part II: preprocessing and differential expression analysis for high quality data. Nano 10(5):903

    CAS  Google Scholar 

  • Feng W, Liu Y, Ding Y, Mao G, Zhao T, Chen K, Qiu X, Xu T, Zhao X, Wu X, Yang L (2020a) Typical neurobehavioral methods and transcriptome analysis reveal the neurotoxicity and mechanisms of di(2-ethylhexyl) phthalate on pubertal male ICR mice with type 2 diabetes mellitus. Arch Toxicol 94(4):1279–1302

    Article  CAS  Google Scholar 

  • Feng YX, Feng NX, Zeng LJ, Chen X, Xiang L, Li YW, Cai QY, Mo CH (2020b) Occurrence and human health risks of phthalates in indoor air of laboratories. Sci Total Environ 707:135609

    Article  CAS  Google Scholar 

  • Festing S, Wilkinson R (2007) The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Rep 8(6):526–530

    Article  CAS  Google Scholar 

  • Franco LS, Shanahan DF, Fuller RA (2017) A review of the benefits of nature experiences: more than meets the eye. Int J Environ Res Public Health 14(8):864

    Article  Google Scholar 

  • GaweÅ‚ek E, Drozdzowska B, Fuchs A (2017) Radon as a risk factor of lung cancer. Przegl Epidemiol 71(1):90–98

    Google Scholar 

  • Ge J, Yang H, Lu X, Wang S, Zhao Y, Huang J, Xi Z, Zhang L, Li R (2020) Combined exposure to formaldehyde and PM2.5: hematopoietic toxicity and molecular mechanism in mice. Environ Int 144:106050

    Article  CAS  Google Scholar 

  • Gleason JA, Bielory L, Fagliano JA (2014) Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: a case-crossover study. Environ Res 132:421–429

    Article  CAS  Google Scholar 

  • Gorden P (1997) Non-insulin dependent diabetes--the past, present and future. Ann Acad Med Singap 26(3):326–330

    CAS  Google Scholar 

  • Gu XY, Chu X, Zeng XL, Bao HR, Liu XJ (2017) Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease. Environ Pollut 226:163–173

    Article  CAS  Google Scholar 

  • Gu Y, Gao M, Zhang W, Yan L, Shao F, Zhou J (2021) Exposure to phthalates DEHP and DINP may lead to oxidative damage and lipidomic disruptions in mouse kidney. Chemosphere 271:129740

    Article  CAS  Google Scholar 

  • Guo J, Zhao Y, Jiang X, Li R, Xie H, Ge L, Xie B, Yang X, Zhang L (2018) Exposure to formaldehyde perturbs the mouse gut microbiome. Genes 9(4):192

    Article  CAS  Google Scholar 

  • Habre R, Coull B, Moshier E, Godbold J, Grunin A, Nath A, Castro W, Schachter N, Rohr A, Kattan M, Spengler J, Koutrakis P (2014a) Sources of indoor air pollution in New York City residences of asthmatic children. J Expo Sci Environ Epidemiol 24(3):269–278

    Article  CAS  Google Scholar 

  • Habre R, Moshier E, Castro W, Nath A, Grunin A, Rohr A, Godbold J, Schachter N, Kattan M, Coull B, Koutrakis P (2014b) The effects of PM2.5 and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. J Expo Sci Environ Epidemiol 24(4):380–387

    Article  CAS  Google Scholar 

  • Huang J, Xu K, Yu L, Pu Y, Wang T, Sun R, Liang G, Yin L, Zhang J, Pu Y (2021) Immunosuppression characterized by increased Treg cell and IL-10 levels in benzene-induced hematopoietic toxicity mouse model. Toxicology 464:152990

    Article  CAS  Google Scholar 

  • IARC (1974) Some anti-thyroid and related substances, nitrofurans and industrial chemicals. In: IARC monographs on the evaluation of the carcinogenic risk of chemicals to man, vol 7. IARC Scientific Publications, pp 111–140

    Google Scholar 

  • IPCS (1999) Environmental health criteria 211. World Health Organization Geneva, Switzerland

    Google Scholar 

  • Jacobson Lda S, Hacon Sde S, Castro HA, Ignotti E, Artaxo P, Ponce De Leon AC (2012) Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: a panel study. Environ Res 117:27–35

    Article  CAS  Google Scholar 

  • Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71(4):1250–1254

    Article  CAS  Google Scholar 

  • Jafari MJ, Rahimi A, Omidi L, Behzadi MH, Rajabi MH (2015) Occupational exposure and health impairments of formaldehyde on employees of a wood industry. Health Promot Perspect 5(4):296–303

    Article  Google Scholar 

  • Ji W, Zhao B (2015) Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: a model-based estimation. Build Environ 90:196–205

    Article  Google Scholar 

  • Kang J, Ding Y, Li B, Liu H, Yang X, Chen M (2017) TRPA1 mediated aggravation of allergic contact dermatitis induced by DINP and regulated by NF-κB activation. Sci Rep 7(1):43586

    Article  Google Scholar 

  • Kataoka T, Etani R, Kanzaki N, Kobashi Y, Yunoki Y, Ishida T, Sakoda A, Ishimori Y, Yamaoka K (2017) Radon inhalation induces manganese-superoxide dismutase in mouse brain via nuclear factor-κB activation. J Radiat Res 58(6):887–893

    Article  CAS  Google Scholar 

  • Kim TW, Che JH, Yun JW (2019) Use of stem cells as alternative methods to animal experimentation in predictive toxicology. Regul Toxicol Pharmacol 105:15–29

    Article  CAS  Google Scholar 

  • Knight A, Bailey J, Balcombe J (2006) Animal carcinogenicity studies: 3. Alternatives to the bioassay. Altern Lab Anim 34(1):39–48

    Article  CAS  Google Scholar 

  • Koch HM, Bolt HM, Preuss R, Angerer J (2005) New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 79(7):367–376

    Article  CAS  Google Scholar 

  • Koch HM, Preuss R, Angerer J (2006) Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure – an update and latest results1. Int J Androl 29(1):155–165

    Article  CAS  Google Scholar 

  • Lafollette H, Shanks N (1994) Animal experimentation: the legacy of Claude Bernard. Int Stud Philos Sci 8(3):195–210

    Article  Google Scholar 

  • Lan Q, Zhang L, Li G, Vermeulen R, Weinberg RS, Dosemeci M, Rappaport SM, Shen M, Alter BP, Wu Y, Kopp W, Waidyanatha S, Rabkin C, Guo W, Chanock S, Hayes RB, Linet M, Kim S, Yin S, Rothman N, Smith MT (2004) Hematotoxicity in workers exposed to low levels of benzene. Science 306(5702):1774–1776

    Article  CAS  Google Scholar 

  • Langley G (2009) The validity of animal experiments in medical research. RSDA 1:161–168

    Google Scholar 

  • Latini G, Verrotti A, De Felice C (2004) DI-2-ethylhexyl phthalate and endocrine disruption: a review. Curr Drug Targets Immune Endocr Metabol Disord 4(1):37–40

    Article  CAS  Google Scholar 

  • Levy N (2012) The use of animal as models: ethical considerations. Int J Stroke 7(5):440–442

    Article  Google Scholar 

  • Li XN, Yang SQ, Li M, Li XS, Tian Q, Xiao F, Tang YY, Kang X, Wang CY, Zou W, Zhang P, Tang XQ (2021) Formaldehyde induces ferroptosis in hippocampal neuronal cells by upregulation of the Warburg effect. Toxicology 448:152650

    Article  CAS  Google Scholar 

  • Liao BQ, Liu CB, Xie SJ, Liu Y, Deng YB, He SW, Fu XP, Fu BB, Wang YL, Chen MH, Lin YH, Li FP, Xie X, Hong XR, Wang HL (2020) Effects of fine particulate matter (PM(2.5)) on ovarian function and embryo quality in mice. Environ Int 135:105338

    Article  CAS  Google Scholar 

  • Liguori GR, Jeronimus BF, De Aquinas Liguori TT, Moreira LFP, Harmsen MC (2017) Ethical issues in the use of animal models for tissue engineering: reflections on legal aspects, moral theory, three Rs strategies, and harm-benefit analysis. Tissue Eng Part C Methods 23(12):850–862

    Article  Google Scholar 

  • Lioy PJ, Wainman T, Zhang J, Goldsmith S (1999) Typical household vacuum cleaners: the collection efficiency and emissions characteristics for fine particles. J Air Waste Manag Assoc 49(2):200–206

    Article  CAS  Google Scholar 

  • Liu D, Zheng Y, Li B, Yao H, Li R, Zhang Y, Yang X (2011) Adjuvant effects of gaseous formaldehyde on the hyper-responsiveness and inflammation in a mouse asthma model immunized by ovalbumin. J Immunotoxicol 8(4):305–314

    Article  CAS  Google Scholar 

  • Liu W, Deng Y, Liu Y, Gong W, Deng W (2013) Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol 27(1):17–27

    Article  CAS  Google Scholar 

  • Liu X, Zhang Y, Wu R, Ye M, Zhao Y, Kang J, Ma P, Li J, Yang X (2018) Acute formaldehyde exposure induced early Alzheimer-like changes in mouse brain. Toxicol Mech Methods 28(2):95–104

    Article  CAS  Google Scholar 

  • Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Vilahur N, Mattock H, Straif K (2017) Carcinogenicity of benzene. Lancet Oncol 18(12):1574–1575

    Article  Google Scholar 

  • Lorenzo-González M, Torres-Durán M, Barbosa-Lorenzo R, Provencio-Pulla M, Barros-Dios JM, Ruano-Ravina A (2019) Radon exposure: a major cause of lung cancer. Expert Rev Respir Med 13(9):839–850

    Article  CAS  Google Scholar 

  • Lu Z, Li CM, Qiao Y, Yan Y, Yang X (2008) Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air 18(2):77–83

    Article  CAS  Google Scholar 

  • Ma S, Wang C, Zhao B, Ren X, Tian S, Wang J, Zhang C, Shao Y, Qiu M, Wang X (2018) Tandem mass tags labeled quantitative proteomics to study the effect of tobacco smoke exposure on the rat lung. Biochim Biophys Acta Proteins Proteomics 1866(3):496–506

    Article  CAS  Google Scholar 

  • Ma XN, Li RQ, Xie JL, Li SH, Li JW, Yan XX (2021) PM2.5-induced inflammation and myocardial cell injury in rats. Eur Rev Med Pharmacol Sci 25(21):6670–6677

    Google Scholar 

  • Maehle A-H, Trohler U (1987) Animal experimentation: a student guide to balancing the issues. Monamy V (ed) Australian and New Zealand Council for the Care of Animals in Research and Teaching (ANZCCART), Glen Osmond, South Australia

    Google Scholar 

  • Mei Y, Duan C, Li X, Zhao Y, Cao F, Shang S, Ding S, Yue X, Gao G, Yang H, Shen L, Feng X, Jia J, Tong Z, Yang X (2016) Reduction of endogenous melatonin accelerates cognitive decline in mice in a simulated occupational formaldehyde exposure environment. Int J Environ Res Public Health 13(3):258

    Article  CAS  Google Scholar 

  • Meng QY, Turpin BJ, Polidori A, Lee JH, Weisel C, Morandi M, Colome S, Stock T, Winer A, Zhang J (2005) PM2.5 of ambient origin: estimates and exposure errors relevant to PM epidemiology. Environ Sci Technol 39(14):5105–5112

    Article  CAS  Google Scholar 

  • Mercier F, Glorennec P, Blanchard O, Le Bot B (2012) Analysis of semi-volatile organic compounds in indoor suspended particulate matter by thermal desorption coupled with gas chromatography/mass spectrometry. J Chromatogr A 1254:107–114

    Article  CAS  Google Scholar 

  • Mercier F, Gilles E, Saramito G, Glorennec P, Le Bot B (2014) A multi-residue method for the simultaneous analysis in indoor dust of several classes of semi-volatile organic compounds by pressurized liquid extraction and gas chromatography/tandem mass spectrometry. J Chromatogr A 1336:101–111

    Article  CAS  Google Scholar 

  • Merzoug S, Toumi ML (2017) Effects of hesperidin on formaldehyde-induced toxicity in pregnant rats. EXCLI J 16:400–413

    Google Scholar 

  • Mirsch J, Hintz L, Maier A, Fournier C, Lobrich M (2020) An assessment of radiation doses from radon exposures using a mouse model system. Int J Radiat Oncol Biol Phys 108(3):770–778

    Article  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55(1):647–671

    Article  CAS  Google Scholar 

  • Nachman KE, Parker JD (2012) Exposures to fine particulate air pollution and respiratory outcomes in adults using two national datasets: a cross-sectional study. Environ Health 11(1):25

    Article  CAS  Google Scholar 

  • National Research Council (2004) Science, medicine, and animals. National Academies Press, Washington, DC

    Google Scholar 

  • Navabpour S, Kwapis JL, Jarome TJ (2020) A neuroscientist’s guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 108:732–748

    Article  Google Scholar 

  • Neghab M, Soltanzadeh A, Choobineh A (2011) Respiratory morbidity induced by occupational inhalation exposure to formaldehyde. Ind Health 49(1):89–94

    Article  CAS  Google Scholar 

  • Nicoll CS (1991) A physiologist’s views on the animal rights/liberation movement. Physiologist 34(6):303, 306–308, 315

    Google Scholar 

  • Nie JH, Chen ZH, Liu X, Wu YW, Li JX, Cao Y, Hei TK, Tong J (2012) Oxidative damage in various tissues of rats exposed to radon. J Toxicol Environ Health A 75(12):694–699

    Article  CAS  Google Scholar 

  • Nie J, Wu J, Chen Z, Jiao Y, Zhang J, Tian H, Li J, Tong J (2019) Expression profiles of long non-coding RNA in mouse lung tissue exposed to radon. J Toxicol Environ Health A 82(15):854–861

    Article  CAS  Google Scholar 

  • Niemann H, Tian XC, King WA, Lee RS (2008) Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135(2):151–163

    Article  CAS  Google Scholar 

  • Nurunnabi ASM, Afroz R, Alam S (2012) Animal research in medical science: pros and cons. Health Sci J PMC 2:28–33

    Google Scholar 

  • Ozen OA, Kus MA, Kus I, Alkoc OA, Songur A (2008) Protective effects of melatonin against formaldehyde-induced oxidative damage and apoptosis in rat testes: an immunohistochemical and biochemical study. Syst Biol Reprod Med 54(4–5):169–176

    Article  CAS  Google Scholar 

  • Pagel ÉC, Costa Reis N Jr, De Alvarez CE, Santos JM, Conti MM, Boldrini RS, Kerr AS (2016) Characterization of the indoor particles and their sources in an Antarctic research station. Environ Monit Assess 188(3):167

    Article  CAS  Google Scholar 

  • Pan X, Gong YY, Martinelli I, Angelici L, Favero C, Bertazzi PA, Mannucci PM, Ariëns RA, Routledge MN (2016) Fibrin clot structure is affected by levels of particulate air pollution exposure in patients with venous thrombosis. Environ Int 92–93:70–76

    Article  CAS  Google Scholar 

  • Pearce J, Boyle P (2005) Examining the relationship between lung cancer and radon in small areas across Scotland. Health Place 11(3):275–282

    Article  Google Scholar 

  • Pelletier M, Bonvallot N, Glorennec P (2017) Aggregating exposures & cumulating risk for semivolatile organic compounds: a review. Environ Res 158:649–659

    Article  CAS  Google Scholar 

  • Polidori A, Turpin B, Meng QY, Lee JH, Weisel C, Morandi M, Colome S, Stock T, Winer A, Zhang J, Kwon J, Alimokhtari S, Shendell D, Jones J, Farrar C, Maberti S (2006) Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. J Expo Sci Environ Epidemiol 16(4):321–331

    Article  CAS  Google Scholar 

  • Poopal RK, Zhang J, Zhao R, Ramesh M, Ren Z (2020) Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish. Chemosphere 252:126498

    Article  CAS  Google Scholar 

  • Pound P, Ritskes-Hoitinga M (2018) Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med 16(1):304

    Article  Google Scholar 

  • Qiu H, Tian LW, Pun VC, Ho KF, Wong TW, Yu IT (2014) Coarse particulate matter associated with increased risk of emergency hospital admissions for pneumonia in Hong Kong. Thorax 69(11):1027–1033

    Article  Google Scholar 

  • Quignot N, Bois FY (2013) A computational model to predict rat ovarian steroid secretion from in vitro experiments with endocrine disruptors. PLoS One 8(1):e53891

    Article  CAS  Google Scholar 

  • Ren F, Ji C, Huang Y, Aniagu S, Jiang Y, Chen T (2020) AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci Total Environ 719:135097

    Article  CAS  Google Scholar 

  • Reynolds P, Urayama KY, Von Behren J, Feusner J (2004) Birth characteristics and hepatoblastoma risk in young children. Cancer 100(5):1070–1076

    Article  Google Scholar 

  • Riva DR, Magalhães CB, Lopes AA, Lanças T, Mauad T, Malm O, Valença SS, Saldiva PH, Faffe DS, Zin WA (2011) Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol 23(5):257–267

    Article  CAS  Google Scholar 

  • Robinson NB, Krieger K, Khan FM, Huffman W, Chang M, Naik A, Yongle R, Hameed I, Krieger K, Girardi LN, Gaudino M (2019) The current state of animal models in research: a review. Int J Surg 72:9–13

    Article  Google Scholar 

  • Roy A, Chapman RS, Hu W, Wei F, Liu X, Zhang J (2012) Indoor air pollution and lung function growth among children in four Chinese cities. Indoor Air 22(1):3–11

    Article  CAS  Google Scholar 

  • Rozas S, Idoeta R, Alegría N, Herranz M (2016) Radiological characterisation and radon equilibrium factor in the outdoor air of a post-industrial urban area. J Environ Radioact 151:126–135

    Article  CAS  Google Scholar 

  • Rumchev K, Brown H, Spickett J (2007) Volatile organic compounds: do they present a risk to our health? Rev Environ Health 22(1):39–55

    Article  CAS  Google Scholar 

  • Russell WMS, Burch RL (1960) The principles of humane experimental technique. Methuen and Co., Ltd., London

    Google Scholar 

  • Ryder RD (1989) Animal revolution: changing attitudes towards speciesism. Basil Blackwell Ltd, UK, Oxford

    Google Scholar 

  • Schlink U, Thiem A, Kohajda T, Richter M, Strebel K (2010) Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci Total Environ 408(18):3840–3851

    Article  CAS  Google Scholar 

  • Shao Z, Bi J, Ma Z, Wang J (2017) Seasonal trends of indoor fine particulate matter and its determinants in urban residences in Nanjing, China. Build Environ 125:319–325

    Article  Google Scholar 

  • Shay JW, Wright WE (2000) The use of telomerized cells for tissue engineering. Nat Biotechnol 18(1):22–23

    Article  CAS  Google Scholar 

  • Shen S, Li J, You H, Wu Z, Wu Y, Zhao Y, Zhu Y, Guo Q, Li X, Li R, Ma P, Yang X, Chen M (2017) Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem Toxicol 99:60–69

    Article  CAS  Google Scholar 

  • Shi YQ, Fu GQ, Zhao J, Cheng SZ, Li Y, Yi LN, Li Z, Zhang L, Zhang ZB, Dai J, Zhang DY (2019) Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol Ind Health 35(3):228–238

    Article  CAS  Google Scholar 

  • Steimberg N, Bertero A, Chiono V, Dell’era P, Di Angelantonio S, Hartung T, Perego S, Raimondi MT, Xinaris C, Caloni F, De Angelis I, Alloisio S, Baderna D (2020) iPS, organoids and 3D models as advanced tools for in vitro toxicology. ALTEX 37(1):136–140

    Google Scholar 

  • Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(19 Suppl 3):Iii50–55

    Google Scholar 

  • Sun R, Zhang J, Yin L, Pu Y (2014) Investigation into variation of endogenous metabolites in bone marrow cells and plasma in C3H/He mice exposed to benzene. Int J Mol Sci 15(3):4994–5010

    Article  CAS  Google Scholar 

  • Sung JH, Esch MB, Shuler ML (2010) Integration of in silico and in vitro platforms for pharmacokinetic-pharmacodynamic modeling. Expert Opin Drug Metab Toxicol 6(9):1063–1081

    Article  CAS  Google Scholar 

  • Tang XQ, Fang HR, Zhou CF, Zhuang YY, Zhang P, Gu HF, Hu B (2013) A novel mechanism of formaldehyde neurotoxicity: inhibition of hydrogen sulfide generation by promoting overproduction of nitric oxide. PLoS One 8(1):e54829

    Article  CAS  Google Scholar 

  • Tannenbaum J, Bennett BT (2015) Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci 54(2):120–132

    Google Scholar 

  • Tomatis L (1982) IARC benzene report. Science 218(4569):214–214

    Article  CAS  Google Scholar 

  • Tran CM, Do TN, Kim K-T (2021) Comparative analysis of neurotoxicity of six phthalates in zebrafish embryos. Toxics 9(1):5

    Article  CAS  Google Scholar 

  • Tsai WT (2019) An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. Rev Environ Health 34(1):81–89

    Article  CAS  Google Scholar 

  • Tulpule K, Dringen R (2013) Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 127(1):7–21

    Article  CAS  Google Scholar 

  • Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R (2012) Occupational benzene exposure and the risk of chronic myeloid leukemia: a meta-analysis of cohort studies incorporating study quality dimensions. Am J Ind Med 55(9):779–785

    Article  CAS  Google Scholar 

  • Wang G, Zhao J, Jiang R, Song W (2015) Rat lung response to ozone and fine particulate matter (PM2.5) exposures. Environ Toxicol 30(3):343–356

    Article  CAS  Google Scholar 

  • Wang J, Li J, Zahid KR, Wang K, Qian Y, Ma P, Ding S, Yang X, Wang X (2016) Adverse effect of DEHP exposure on the serum insulin level of Balb/c mice. Mol Cell Toxicol 12(1):83–91

    Article  CAS  Google Scholar 

  • Wang X, Chen M, Zhong M, Hu Z, Qiu L, Rajagopalan S, Fossett NG, Chen LC, Ying Z (2017a) Exposure to concentrated ambient PM2.5 shortens lifespan and induces inflammation-associated signaling and oxidative stress in Drosophila. Toxicol Sci 156(1):199–207

    CAS  Google Scholar 

  • Wang Y, Chen B, Lin T, Wu S, Wei G (2017b) Protective effects of vitamin E against reproductive toxicity induced by di(2-ethylhexyl) phthalate via PPAR-dependent mechanisms. Toxicol Mech Methods 27(7):551–559

    Article  CAS  Google Scholar 

  • Wang H, Shen X, Liu J, Wu C, Gao J, Zhang Z, Zhang F, Ding W, Lu Z (2019) The effect of exposure time and concentration of airborne PM2.5 on lung injury in mice: a transcriptome analysis. Redox. Biol 26:101264

    CAS  Google Scholar 

  • Wei C, Chen M, You H, Qiu F, Wen H, Yuan J, Xiang S, Yang X (2017) Formaldehyde and co-exposure with benzene induce compensation of bone marrow and hematopoietic stem/progenitor cells in BALB/c mice during post-exposure period. Toxicol Appl Pharmacol 324:36–44

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42(40):9018–9040

    Article  CAS  Google Scholar 

  • WHO (1989) Indoor air quality: organic pollutants. Environ Technol Lett 10(9):855–858

    Article  Google Scholar 

  • WHO (2006) Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum 88:1–478

    Google Scholar 

  • Wichmann HE, Schaffrath Rosario A, Heid IM, Kreuzer M, Heinrich J, Kreienbrock L (2005) Lung cancer risk due to radon in dwellings—evaluation of the epidemiological knowledge. Int Congr Ser 1276:54–57

    Article  Google Scholar 

  • Williams PR, Panko JM, Unice K, Brown JL, Paustenbach DJ (2008) Occupational exposures associated with petroleum-derived products containing trace levels of benzene. J Occup Environ Hyg 5(9):565–574

    Article  CAS  Google Scholar 

  • Windholz G (1987) Pavlov as a psychologist. A reappraisal. Pavlov J Biol Sci 22(3):103–112

    Article  CAS  Google Scholar 

  • Wu S, Deng F, Hao Y, Shima M, Wang X, Zheng C, Wei H, Lv H, Lu X, Huang J, Qin Y, Guo X (2013) Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study. J Hazard Mater 260:183–191

    Article  CAS  Google Scholar 

  • Wu Q, Fang L, Yang Y, Wang A, Chen X, Sun J, Wan J, Hong C, Tong J, Tao S, Tian H (2021) Protection of melatonin against long-term radon exposure-caused lung injury. Environ Toxicol 36(4):472–483

    Article  CAS  Google Scholar 

  • Yan B, Guo J, Liu X, Li J, Yang X, Ma P, Wu Y (2016a) Oxidative stress mediates dibutyl phthalateinduced anxiety-like behavior in Kunming mice. Environ Toxicol Pharmacol 45:45–51

    Article  CAS  Google Scholar 

  • Yan B, Li J, Guo J, Ma P, Wu Z, Ling Z, Guo H, Hiroshi Y, Yanagi U, Yang X, Zhu S, Chen M (2016b) The toxic effects of indoor atmospheric fine particulate matter collected from allergic and non-allergic families in Wuhan on mouse peritoneal macrophages. J Appl Toxicol 36(4):596–608

    Article  CAS  Google Scholar 

  • Yang Y, Liu L, Xu C, Li N, Liu Z, Wang Q, Xu D (2018) Source apportionment and influencing factor analysis of residential indoor PM2.5 in Beijing. Int J Environ Res Public Health 15(4):686

    Article  CAS  Google Scholar 

  • Yang Y, Feng Y, Huang H, Cui L, Li F (2021) PM2.5 exposure induces reproductive injury through IRE1/JNK/autophagy signaling in male rats. Ecotoxicol Environ Saf 211:111924

    Article  CAS  Google Scholar 

  • You H, Li R, Wei C, Chen S, Mao L, Zhang Z, Yang X (2016) Thymic stromal lymphopoietin neutralization inhibits the immune adjuvant effect of di-(2-ethylhexyl) phthalate in balb/c mouse asthma model. PLoS One 11(7):e0159479

    Article  CAS  Google Scholar 

  • Yu G, Chen Q, Liu X, Guo C, Du H, Sun Z (2014a) Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression. Mol Med Rep 10(4):1915–1920

    Article  CAS  Google Scholar 

  • Yu GY, Song XF, Liu Y, Sun ZW (2014b) Inhaled formaldehyde induces bone marrow toxicity via oxidative stress in exposed mice. Asian Pac J Cancer Prev 15(13):5253–5257

    Article  Google Scholar 

  • Yu GY, Song XF, Zhao SH, Liu Y, Sun ZW (2015) Formaldehyde induces the bone marrow toxicity in mice by regulating the expression of Prx3 protein. J Huazhong Univ Sci Technolog Med Sci 35(1):82–86

    Article  CAS  Google Scholar 

  • Yu L, Wang B, Cheng M, Yang M, Gan S, Fan L, Wang D, Chen W (2020) Association between indoor formaldehyde exposure and asthma: a systematic review and meta-analysis of observational studies. Indoor Air 30(4):682–690

    Article  CAS  Google Scholar 

  • Zang X, Zhao J, Lu C (2021) PM2.5 inducing myocardial fibrosis mediated by Ang II/ERK1/2/TGF-beta1 signaling pathway in mice model. J Renin Angiotensin Aldosterone Syst 22(1):14703203211003786

    Article  CAS  Google Scholar 

  • Zhang J, Lioy PJ, He Q (1994) Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ Sci Technol 28(1):146–152

    Article  CAS  Google Scholar 

  • Zhang L, Freeman L, Nakamura J, Hecht S, Vandenberg J, Smith M, Sonawane B (2010) Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen 51(3):181–191

    CAS  Google Scholar 

  • Zhang X, Zhong W, Meng Q, Lin Q, Fang C, Huang X, Li C, Huang Y, Tan J (2015) Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma 52(8):785–794

    Google Scholar 

  • Zhang X, Zhao Y, Song J, Yang X, Zhang J, Zhang Y, Li R (2018) Differential health effects of constant versus intermittent exposure to formaldehyde in mice: implications for building ventilation strategies. Environ Sci Technol 52(3):1551–1560

    Article  CAS  Google Scholar 

  • Zhang C, Jeong CB, Lee JS, Wang D, Wang M (2019) Transgenerational proteome plasticity in resilience of a marine copepod in response to environmentally relevant concentrations of microplastics. Environ Sci Technol 53(14):8426–8436

    Article  CAS  Google Scholar 

  • Zhang N, Li P, Lin H, Shuo T, Ping F, Su L, Chen G (2021) IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway. Environ Toxicol Pharmacol 86:103659

    Article  CAS  Google Scholar 

  • Zhao Y, Magana LC, Cui H, Huang J, Mchale CM, Yang X, Looney MR, Li R, Zhang L (2021) Formaldehyde-induced hematopoietic stem and progenitor cell toxicity in mouse lung and nose. Arch Toxicol 95(2):693–701

    Article  CAS  Google Scholar 

  • Zhou DX, Qiu SD, Zhang J, Tian H, Wang HX (2006) The protective effect of vitamin E against oxidative damage caused by formaldehyde in the testes of adult rats. Asian J Androl 8(5):584–588

    Article  CAS  Google Scholar 

  • Zhou D, Zhang J, Wang H (2011) Assessment of the potential reproductive toxicity of long-term exposure of adult male rats to low-dose formaldehyde. Toxicol Ind Health 27(7):591–598

    Article  CAS  Google Scholar 

  • Zhou L, Su X, Li B, Chu C, Sun H, Zhang N, Han B, Li C, Zou B, Niu Y, Zhang R (2019) PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. Ecotoxicol Environ Saf 169:551–563

    Article  CAS  Google Scholar 

  • Zhu J, Wong SL, Cakmak S (2013) Nationally representative levels of selected volatile organic compounds in Canadian residential indoor air: population-based survey. Environ Sci Technol 47(23):13276–13283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The presented work was supported by the National Natural Science Foundation of China (42077403), the National Key Research and Development Program of China (2017YFC0702700), and Self-Determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE (CCNU18JCXK07 and CCNU19TS066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, J., Yang, X., Zheng, X., Li, R. (2022). Animal Tests to Determine the Health Risks of Indoor Air Pollutants. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics