Skip to main content

Abstract

Competing risks data arise when the study units are exposed to several risks at the same time but it is assumed that the eventual failure of a unit is due to only one of these risks, which is called the “cause of failure”. Statistical inference procedures when the time to failure and the cause of failure are observed for each unit are well documented. In some applications, it is possible that the cause of failure is either missing or masked for some units. In this article, we review some statistical inference procedures used when the cause of failure is missing or masked for some units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Andersen, P.K., and O. Borgan. 1985. Counting process models for life history data: A review. Scandinavian Journal of Statistics 12: 97–158.

    MathSciNet  MATH  Google Scholar 

  2. Anderson, P.K., O. Borgan, R.D. Gill, and N. Keiding. 1993. Statistical models based on counting processes. New York: Springer.

    Book  MATH  Google Scholar 

  3. Bandyopadhyay, D., and S. Datta. 2008. Testing equality of survival distributions when the population marks are missing. Journal of Statistical Planning and Inference 138 (6): 1722–1732.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandyopadhyaya, D., and M.A. Jácomeb. 2016. Comparing conditional survival functions with missing population marks in a competing risks models. Computational Statistics and Data Analysis 95: 150–160.

    Google Scholar 

  5. Bordes, L., J.Y. Dauxois, and P. Joly. 2014. Semiparametric inference of competing risks data with additive hazards and missing cause of failure under MCAR or MAR assumptions. Electronic Journal of Statistics 8: 41–95.

    Article  MathSciNet  MATH  Google Scholar 

  6. Carriere, K.C., and S.C. Kochar. 2000. Comparing sub-survival functions in a competing risks model. Lifetime Data Analysis 6: 85–97.

    Article  MathSciNet  MATH  Google Scholar 

  7. Craiu, R.V., and T. Duchesne. 2004. Inference based on the EM algorithm for the competing risks model with masked causes of failure. Biometrika 91: 543–558.

    Article  MathSciNet  MATH  Google Scholar 

  8. Craiu, R.V., and B. Reiser. 2006. Inference for the dependent competing risks model with masked causes of failure. Lifetime Data Analysis 12: 21–33.

    Article  MathSciNet  MATH  Google Scholar 

  9. Crowder, M.J. 2001. Classical competing risks. London: Chapman and Hall/CRC.

    Book  MATH  Google Scholar 

  10. Crowder, M.J. 2012. Multivariate survival analysis and competing risks. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  11. Cummings, F.J., R. Gray, T.E. Davis, D.C. Tormey, J.E. Harris, G.G. Falkson, and J. Arseneau. 1986. Tamoxifen versus placebo : Double blind adjuvant trial in elderly woman with stage II breast cancer. National Cancer Institute Monographs 1: 119–123.

    Google Scholar 

  12. Datta, S., D. Bandyopadhyay, and G.A. Satten. 2010. Inverse probability of censoring (2008). weighted U-statistics for right-censored data with an application to testing hypotheses. Scandinavian Journal of Statistics 37: 680–700.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dewan, I., and J.V. Deshpande. 2005. Tests for some statistical hypotheses for dependent competing risks - A review. In Modern statistical methods in reliability, ed. A. Wilson, et al., 137–152. New Jersey: World Scientific.

    Chapter  Google Scholar 

  14. Dewan, I., and Naik-Nimbalkar, U.V. 2013. Statistical analysis of competing risks with missing causes of failure. In Proceedings 59th ISI World Statistics Congress, 1223–1228.

    Google Scholar 

  15. Dewnaji, A. 1992. A note on a test for competing risks with missing failure type. Biometrika 79: 855–857.

    Article  Google Scholar 

  16. Dewnaji, A., and D. Sengupta. 2003. Estimation of competing risks with general missing pattern in failure types. Biometrics 59: 1063–1070.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dewnaji, A., P.G. Sankaran, D. Sengupta, and B. Karmakar. 2016. Regression analysis of competing risks data with general missing pattern in failure types. Statistical Methodology 29: 18–31.

    Article  MathSciNet  Google Scholar 

  18. Dinse, G.E. 1982. Nonparametric estimation for partially complete time and type of failure data. Biometrics 38: 417–431.

    Article  Google Scholar 

  19. Effraimidis, G., and C.M. Dahl. 2014. Nonparametric estimation of cumulative incidence functions for competing risks data with missing cause of failure. Statistics and Probability Letters 89: 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  20. Flehinger, B.J., B. Reiser, and E. Yashchin. 1998. Survival with competing risks and masked causes of failures. Biometrika 85: 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  21. Flehinger, B.J., R. Reiser, and E. Yashchin. 2002. Parametric modeling for survival with competing risks and masked failure causes. Lifetime Data Analysis 8: 177–203.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gijbels, I., D.Y. Lin, and Z. Ying. 2007. Non- and semi-parametric analysis of failure time data with missing failure indicators. IMS lecture notes-monograph series complex datasets and inverse problems (2008). Tomography, Networks and Beyond 54: 203–223.

    Google Scholar 

  23. Goetghebeur, E., and L. Ryan. 1990. A modified log rank test for competing risks with missing failure type. Biometrika 77: 207–211.

    Article  MathSciNet  MATH  Google Scholar 

  24. Goetghebeur, E., and L. Ryan. 1995. Analysis of competing risks survival data when some failure types are missing. Biometrika 82: 821–833.

    Article  MathSciNet  MATH  Google Scholar 

  25. Greenhouse, J.B., and R.A. Wolfe. 1984. A competing risks derivation of a mixture model for the analysis of survival data. Communications in Statistics - Theory and Methods 13: 3133–3154.

    Article  MATH  Google Scholar 

  26. Guess, F.M., J.S. Usher, and T.J. Hodgson. 1991. Estimating system and component reliabilities under partial information on the cause of failure. Journal of Statistical Planning and Inference 29: 75–85.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hyun, S., J. Lee, and Y. Sun. 2012. Proportional hazards model for competing risks data with missing cause of failure. Journal of Statistical Planning and Inference 142: 1767–1779.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kochar S.C. 1995. A review of some distribution-free tests for the equality of cause specific hazard rates. In Analysis of Censored Data, Eds. Koul H.L, Deshpande J.V, IMS, Hayward, 147–162.

    Google Scholar 

  29. Kodell, R.L., and J.J. Chen. 1987. Handling cause of death in equivocal cases using the EM algorithm (with rejoinder). Communications in Statistics - Theory and Methods 16: 2565–2585.

    Article  MATH  Google Scholar 

  30. Kundu, D., and S. Basu. 2000. Analysis of incomplete data in presence of competing risks. Journal of Statistical Planning and Inference 87: 221–239.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lapidus, G., M. Braddock, R. Schwartz, L. Banco, and L. Jacobs. 1994. Accuracy of fatal motorcycle injury reporting on death certificates. Accident Analysis and Prevention 26: 535–542.

    Article  Google Scholar 

  32. Lee, M., K.A. Cronin, M.H. Gail, J.J. Dignam, and E.J. Feuer. 2011. Multiple imputation methods for inference on cumulative incidence with missing cause of failure. Biometrical Journal 53: 974–993.

    Article  MathSciNet  MATH  Google Scholar 

  33. Lo, S.H. 1991. Estimating a survival function with incomplete cause-of-death data. Journal of Multivariate Analysis 39: 217–235.

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, K., and A.A. Tsiatis. 2001. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics 57: 1191–1197.

    Article  MathSciNet  MATH  Google Scholar 

  35. Lu, K., and A.A. Tsiatis. 2005. Comparison between two partial likelihood approaches for the competing risks model with missing cause of failure. Lifetime Data Analysis 11: 29–40.

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, W., and Y. Liang. 2008. Analysis of competing risks data with missing cause of failure under additive hazards model. Statistica Sinica 18: 219–234.

    MathSciNet  MATH  Google Scholar 

  37. Miyakawa, M. 1984. Analysis of incomplete data in competing risks model. IEEE Transactions in Reliability 33: 293–296.

    Article  Google Scholar 

  38. Moreno-Betancur, M., G. Rey, and A. Latouche. 2015. Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure. Biometrics 71: 498–507.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ramlau-Hansen, H. 1983. Smoothing counting process intensities by means of kernel functions. Annals of Statistics 11: 453–466.

    Article  MathSciNet  MATH  Google Scholar 

  40. Rubin, D.B. 1976. Inference and missing data. Biometrika 63: 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  41. Sarhan, A.M. 2001. Reliability estimations of components from masked system life data. Reliability Engineering and System Safety 74: 107–113.

    Article  Google Scholar 

  42. Sarhan, A.M. 2003. Estimation of system components reliabilities using masked data. Applied Mathematics and Computation 136: 79–92.

    Article  MathSciNet  MATH  Google Scholar 

  43. Sen, A., M. Banerjee, Y. Li, and A.M. Noone. 2010. A Bayesian approach to competing risks analysis with masked cause of death. Statistics in Medicine 29: 1681–1695.

    Article  MathSciNet  Google Scholar 

  44. Serfling, R.J. 1980. Approximation theorems of mathematical statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  45. Sun, Y., H. Wang, and P.B. Gilbert. 2012. Quantile regression for competing risks data with missing cause of failure. Statistica Sinica 22: 703–728.

    Article  MathSciNet  MATH  Google Scholar 

  46. Tsiatis, A.A., M. Davidian, and B. McNeney. 2002. Multiple imputation methods for testing different treatment differences in survival distributions with missing cause of failure. Biometrika 89: 238–244.

    Article  MathSciNet  MATH  Google Scholar 

  47. Usher, J.S., and T.J. Hodgson. 1988. Maximum likelihood estimation of component reliability using masked system life test data. IEEE Transactions on Reliability 37: 550–555.

    Article  MATH  Google Scholar 

  48. Usher, J.S. 1996. Weibull component reliability - prediction in the presence of masked data. IEEE Transactions on Reliability 45: 229–232.

    Article  Google Scholar 

  49. Van der Laan, M.J., and I.W. McKeague. 1998. Efficient estimation from right-censored data when failure indicators are missing at random. Annals of Statistics 26: 164–182.

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, J., and Q. Yu. 2012. Consistency of the generalized MLE with interval-censored and masked competing risks data. Communications in Statistics - Theory and Methods 41: 4360–4377.

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, Q., and J. Li. 2012. The NPMLE of the joint distribution function with right-censored and masked competing risks data. Journal of Nonparametric Statistics 24: 753–764.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. J. V. Deshpande and Prof. Sangita Kulathinal for several fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isha Dewan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dewan, I., Naik-Nimbalkar, U. (2017). On Competing Risks with Masked Failures. In: Adhikari, A., Adhikari, M., Chaubey, Y. (eds) Mathematical and Statistical Applications in Life Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5370-2_13

Download citation

Publish with us

Policies and ethics