Skip to main content

Nanodimensional and Nanocrystalline Calcium Orthophosphates

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

Abstract

Nano-scaled particles and crystals play very important roles in biological systems. For example, calcium orthophosphates (CaPO4) with nano-size dimensions represent the basic inorganic building blocks of bones and teeth of mammals. According to recent discoveries in biomineralization, zillions of nanodimensional crystals of biological apatites are nucleated in body fluids, and afterward, they are self-assembled into these complex structures. In addition, both a greater viability and a better proliferation of various types of cells have been detected on smaller crystals of CaPO4. All these effects are due to the higher surface-to-volume ratio, increased reactivity, and biomimetic morphologies of the nano-scaled particles. Thus, the nano-sized and nanocrystalline forms of CaPO4 have a great potential to revolutionize the hard tissue engineering field, starting from bone repair and augmentation to controlled drug delivery systems. Therefore, preparation and application of nanodimensional CaPO4 are the important topics in modern material science, and such formulations have been already tested clinically for various purposes. Currently, more efforts are focused on the possibility of combining nano-scaled CaPO4 with cells, drugs, and other biologically active substances for multipurpose applications. This chapter describes current state-of-the-art and recent developments on the subject, starting from synthesis and characterization to biomedical and clinical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mann S (2001) Biomineralization principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  2. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  3. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31

    Article  Google Scholar 

  4. Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702

    Article  Google Scholar 

  5. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  Google Scholar 

  6. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104

    Article  Google Scholar 

  7. Giachelli CM (1999) Ectopic calcification: gathering hard facts about soft tissue mineralization. Am J Pathol 154:671–675

    Article  Google Scholar 

  8. Kirsch T (2006) Determinants of pathological mineralization: crystal deposition diseases. Curr Opin Rheumatol 18:174–180

    Article  Google Scholar 

  9. Christian RC, Fitzpatrick LA (1999) Vascular calcification. Curr Opin Nephrol Hypertens 8:443–448

    Article  Google Scholar 

  10. Dorozhkin SV (2012) Nanodimensional and nanocrystalline calcium orthophosphates. AM J Biomed Eng 2(3):48–97

    Article  Google Scholar 

  11. Alivisatos AP (2000) Enhanced naturally aligned nanocrystals. Science 289:736–737

    Article  Google Scholar 

  12. Narayan RJ, Kumta PN, Sfeir C, Lee DH, Choi D, Olton D (2004) Nanostructured ceramics in medical devices: applications and prospects. JOM 56:38–43

    Article  Google Scholar 

  13. Cai Y, Tang R (2008) Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem 18:3775–3787

    Article  Google Scholar 

  14. Ginebra MP, Driessens FCM, Planell JA (2004) Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 25:3453–3462

    Article  Google Scholar 

  15. http://www.nano.gov/nanotech-101/what/definition. Accessed in Dec 2016

  16. Karch J, Birringer R, Gleiter H (1987) Ceramics ductile at low temperature. Nature 330:556–558

    Article  Google Scholar 

  17. Webster TJ (2001) Nanophase ceramics: the future of orthopedic and dental implant material. In: Ying JY (ed) Nanostructured materials. Academic, New York, pp 125–166

    Google Scholar 

  18. Tasker LH, Sparey-Taylor GJ, Nokes LD (2007) Applications of nanotechnology in orthopaedics. Clin Orthop Relat Res 456:243–249

    Article  Google Scholar 

  19. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  Google Scholar 

  20. Cölfen H (2007) Bio-inspired mineralization using hydrophilic polymers. Top Curr Chem 271:1–77

    Article  Google Scholar 

  21. Oaki Y, Imai H (2005) Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small 2:66–70

    Article  Google Scholar 

  22. Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59:339–359

    Article  Google Scholar 

  23. Ben-Nissan B (2004) Nanoceramics in biomedical applications. MRS Bull 29:28–32

    Article  Google Scholar 

  24. Rehman I (2004) Nano bioceramics for biomedical and other applications. Mater Technol 19:224–233

    Article  Google Scholar 

  25. Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc 29:2969–2978

    Article  Google Scholar 

  26. Bianco A, Cacciotti I, Lombardi M, Montanaro L (2009) Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull 44:345–354

    Article  Google Scholar 

  27. Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, Bigi A (2009) Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A 89A:594–600

    Article  Google Scholar 

  28. Jiang H, Li Y, Zuo Y, Yang W, Zhang L, Li J, Wang L, Zou Q, Cheng L, Li J (2009) Physical and chemical properties of superparamagnetic Fe-incorporated nano hydroxyapatite. J Nanosci Nanotechnol 9:6844–6850

    Google Scholar 

  29. Al-Kattan A, Dufour P, Dexpert-Ghys J, Drouet C (2010) Preparation and physicochemical characteristics of luminescent apatite-based colloids. J Phys Chem C 114:2918–2924

    Article  Google Scholar 

  30. Hou CH, Chen CW, Hou SM, Li YT, Lin FH (2009) The fabrication and characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance in hyperthermia processes in vitro. Biomaterials 30:4700–4707

    Article  Google Scholar 

  31. Hanifi A, Fathi MH, Sadeghi HMM, Varshosaz J (2010) Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J Mater Sci Mater Med 21:2393–2401

    Article  Google Scholar 

  32. Stojanović Z, Veselinović L, Marković S, Ignjatović N, Uskoković D (2009) Hydrothermal synthesis of nanosize pure and cobalt-exchanged hydroxyapatite. Mater Manuf Process 24:1096–1103

    Article  Google Scholar 

  33. Veselinović L, Karanović L, Stojanović Z, Bračko I, Marković S, Ignjatović N, Uskoković D (2010) Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J Appl Crystallogr 43:320–327

    Article  Google Scholar 

  34. Evis Z, Webster TJ (2011) Nanosize hydroxyapatite: doping with various ions. Adv Appl Ceram 110:311–320

    Article  Google Scholar 

  35. Al-Kattan A, Girod-Fullana S, Charvillat C, Ternet-Fontebasso H, Dufour P, Dexpert-Ghys J, Santran V, Bordère J, Pipy B, Bernad J, Drouet C (2012) Biomimetic nanocrystalline apatites: emerging perspectives in cancer diagnosis and treatment. Int J Pharm 423:26–36

    Article  Google Scholar 

  36. Kaflak A, Kolodziejski W (2011) Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J Mol Struct 990:263–270

    Article  Google Scholar 

  37. Kaflak A, Ślósarczyk A, Kolodziejski W (2011) A comparative study of carbonate bands from nanocrystalline carbonated hydroxyapatites using FT-IR spectroscopy in the transmission and photoacoustic modes. J Mol Struct 997:7–14

    Article  Google Scholar 

  38. Li Y, Widodo J, Lim S, Ooi CP (2012) Synthesis and cytocompatibility of manganese (II) and iron (III) substituted hydroxyapatite nanoparticles. J Mater Sci 47:754–763

    Article  Google Scholar 

  39. Tampieri A, d’Alessandro T, Sandri M, Sprio S, Landi E, Bertinetti L, Panseri S, Pepponi G, Goettlicher J, Bañobre-López M, Rivas J (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851

    Article  Google Scholar 

  40. Delgado-López JM, Iafisco M, Rodríguez I, Tampieri A, Prat M, Gómez-Morales J (2012) Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater 8:3491–3499

    Article  Google Scholar 

  41. Peetsch A, Greulich C, Braun D, Stroetges C, Rehage H, Siebers B, Köller M, Epple M (2013) Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf B Biointerfaces 102:724–729

    Article  Google Scholar 

  42. Han Y, Wang X, Da H, Li S (2013) Synthesis and luminescence of Eu3+ doped hydroxyapatite nanocrystallines: effects of calcinations and Eu3+ content. J Lumin 135:281–287

    Article  Google Scholar 

  43. Hayakawa S, Kanaya T, Tsuru K, Shirosaki Y, Osaka A, Fujii E, Kawabata K, Gasqueres G, Bonhomme C, Babonneau F, Jäger C, Kleebe HJ (2013) Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater 9:4856–4867

    Article  Google Scholar 

  44. Kheradmandfard M, Fathi MH (2013) Fabrication and characterization of nanocrystalline Mg-substituted fluorapatite by high energy ball milling. Ceram Int 39:1651–1658

    Article  Google Scholar 

  45. Alshemary AZ, Goh YF, Akram M, Razali IR, Kadir MRA, Hussain R (2013) Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite. Mater Res Bull 48:2106–2110

    Article  Google Scholar 

  46. Liu Z, Wang Q, Yao S, Yang L, Yu S, Feng X, Li F (2014) Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceram Int 40:2613–2617

    Article  Google Scholar 

  47. Ignjatovic N, Ajdukovic Z, Rajkovic J, Najman S, Mihailovic D, Uskokovic D (2015) Enhanced osteogenesis of nanosized cobalt-substituted hydroxyapatite. J Bionic Eng 12:604–612

    Article  Google Scholar 

  48. Ma J, Qin J (2015) Graphene-like zinc substituted hydroxyapatite. Cryst Growth Des 15:1273–1279

    Article  Google Scholar 

  49. Zheng X, Liu M, Hui J, Fan D, Ma H, Zhang X, Wang Y, Wei Y (2015) Ln3+-doped hydroxyapatite nanocrystals: controllable synthesis and cell imaging. Phys Chem Chem Phys 17:20301–20307

    Article  Google Scholar 

  50. Ciobanu G, Bargan AM, Luca C (2015) New bismuth-substituted hydroxyapatite nanoparticles for bone tissue engineering. JOM 67:2534–2542

    Article  Google Scholar 

  51. AlHammad MS (2016) Nanostructure hydroxyapatite based ceramics by sol gel method. J Alloys Compd 661:251–256

    Article  Google Scholar 

  52. Wilberforce SI, Finlayson CE, Best SM, Cameron RE (2011) The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L-lactide-co-glycolide)/α-tricalcium phosphate nanocomposites. J Mech Behav Biomed Mater 4:1081–1089

    Article  Google Scholar 

  53. Wilberforce SI, Finlayson CE, Best SM, Cameron RE (2011) A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites. Acta Biomater 7:2176–2184

    Article  Google Scholar 

  54. Tolmachev DA, Lukasheva NV (2012) Interactions binding mineral and organic phases in nanocomposites based on bacterial cellulose and calcium phosphates. Langmuir 28:13473–13484

    Article  Google Scholar 

  55. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UGK, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178

    Article  Google Scholar 

  56. Liang YH, Liu CH, Liao SH, Lin YY, Tang HW, Liu SY, Lai IR, Wu KCW (2012) Cosynthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method. ACS Appl Mater Interfaces 4:6720–6727

    Article  Google Scholar 

  57. Son KD, Kim YJ (2013) Morphological structure and characteristics of hydroxyapatite/β-cyclodextrin composite nanoparticles synthesized at different conditions. Mater Sci Eng C 33:499–506

    Article  Google Scholar 

  58. Thien DVH, Hsiao SW, Ho MH, Li CH, Shih JL (2013) Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48:1640–1645

    Article  Google Scholar 

  59. Abdal-Hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf B: Biointerfaces 102:635–643

    Article  Google Scholar 

  60. Soltani Z, Ziaie F, Ghaffari M, Afarideh H, Ehsani M (2013) Mechanical and thermal properties and morphological studies of 10MeV electron beam irradiated LDPE/hydroxyapatite nano-composite. Radiat Phys Chem 83:79–85

    Article  Google Scholar 

  61. Sahni G, Gopinath P, Jeevanandam P (2013) A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli. Colloids Surf B: Biointerfaces 103:441–447

    Article  Google Scholar 

  62. Aminzare M, Eskandari A, Baroonian MH, Berenov A, Hesabi ZR, Taheri M, Sadrnezhaad SK (2013) Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram Int 39:2197–2206

    Article  Google Scholar 

  63. Zhang H, Fu QW, Sun TW, Chen F, Qi C, Wu J, Cai ZY, Qian QR, Zhu YJ (2015) Amorphous calcium phosphate, hydroxyapatite and poly(D,L-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf B: Biointerfaces 136:27–36

    Article  Google Scholar 

  64. Kollath VO, Mullens S, Luyten J, Traina K, Cloots R (2015) Protein-calcium phosphate nanocomposites: benchmarking protein loading via physical and chemical modifications against co-precipitation. RSC Adv 5:55625–55632

    Article  Google Scholar 

  65. Hannora AE, Ataya S (2016) Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high energy ball milling. J Alloys Compd 658:222–233

    Article  Google Scholar 

  66. Garai S, Sinha A (2016) Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts. Mater Sci Eng C 59:375–383

    Article  Google Scholar 

  67. Pan Y, Xiong D, Chen X (2007) Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J Mater Sci 42:5129–5134

    Article  Google Scholar 

  68. Deng C, Weng J, Lu X, Zhou SB, Wan JX, Qu SX, Feng B, Li XH, Cheng QY (2008) Mechanism of ultrahigh elongation rate of poly(D,L-lactide)-matrix composite biomaterial containing nano-apatite fillers. Mater Lett 62:607–610

    Article  Google Scholar 

  69. Meng YH, Tang CY, Tsui CP, Chen DZ (2008) Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J Mater Sci Mater Med 19:75–81

    Article  Google Scholar 

  70. Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, Wang H, Mehl C (2011) Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater 7:1346–1353

    Article  Google Scholar 

  71. Gemelli E, de Jesus J, Camargo NHA, de Soares GDA, Henriques VAR, Nery F (2012) Microstructural study of a titanium-based biocomposite produced by the powder metallurgy process with TiH2 and nanometric β-TCP powders. Mater Sci Eng C 32:1011–1015

    Article  Google Scholar 

  72. Liu D, Zuo Y, Meng W, Chen M, Fan Z (2012) Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater Sci Eng C 32:1253–1258

    Article  Google Scholar 

  73. Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X (2013) Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 34:1402–1412

    Article  Google Scholar 

  74. Li H, Fu Y, Niu R, Zhou Z, Nie J, Yang D (2013) Study on the biocomposites with poly(ethylene glycol) dimethacrylate and surfaced-grafted hydroxyapatite nanoparticles. J Appl Polym Sci 127:1737–1743

    Article  Google Scholar 

  75. Jia L, Duan Z, Fan D, Mi Y, Hui J, Chang L (2013) Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes. Mater Sci Eng C 33:727–734

    Article  Google Scholar 

  76. Viswanathan K, Rathish P, Gopinath VP, Janice R, Raj GD (2014) In ovo delivery of Newcastle disease virus conjugated hybrid calcium phosphate nanoparticle and to study the cytokine profile induction. Mater Sci Eng C 45:564–572

    Article  Google Scholar 

  77. Dorozhkin SV (2015) Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J Funct Biomater 6:708–832

    Article  Google Scholar 

  78. Williams DF (2008) The relationship between biomaterials and nanotechnology. Biomaterials 29:1737–1738

    Article  Google Scholar 

  79. Feynman RP (1992) There’s plenty of room at the bottom. J Microelectromech Syst 1:60–66

    Article  Google Scholar 

  80. European Commission, Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (n.d.) Opinion on “the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies”. Adopted Brussels: European Commission. 29 November 2007

    Google Scholar 

  81. http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. Accessed in Dec 2016

  82. Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381

    Article  Google Scholar 

  83. Webster TJ, Ahn ES (2006) Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol 103:275–308

    Google Scholar 

  84. Streicher RM, Schmidt M, Fiorito S (2007) Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine 2:861–874

    Article  Google Scholar 

  85. Havancsak K (2003) Nanotechnology at present and its promises in the future. Mater Sci Forum 414–415:85–94

    Article  Google Scholar 

  86. Duncan R (2004) Nanomedicines in action. Pharm J 273:485–488

    Google Scholar 

  87. Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909

    Article  Google Scholar 

  88. Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369

    Article  Google Scholar 

  89. Sun L, Chow LC, Frukhtbeyn SA, Bonevich JE (2010) Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J Res Natl Inst Stand Technol 115:243–255

    Article  Google Scholar 

  90. Sylvie J, Sylvie TD, Pascal PM, Fabienne P, Hassane O, Guy C (2010) Effect of hydroxyapatite and β-tricalcium phosphate nanoparticles on promonocytic U937 cells. J Biomed Nanotechnol 6:158–165

    Article  Google Scholar 

  91. Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, Westendorf AM (2010) The use of calcium phosphate nanoparticles encapsulating toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials 31:5627–5633

    Article  Google Scholar 

  92. Wu HC, Wang TW, Bohn MC, Lin FH, Spector M (2010) Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv Funct Mater 20:67–77

    Article  Google Scholar 

  93. Gergely G, Wéber F, Lukács I, Illés L, Tóth AL, Horváth ZE, Mihály J, Balázsi C (2010) Nano-hydroxyapatite preparation from biogenic raw materials. Cent Eur J Chem 8:375–381

    Google Scholar 

  94. Ergu C, Evis Z, Webster TJ, Sahin FC (2011) Synthesis and microstructural characterization of nano-size calcium phosphates with different stoichiometry. Ceram Int 37:971–977

    Article  Google Scholar 

  95. Ge X, Leng Y, Ren F, Lu X (2011) Integrity and zeta potential of fluoridated hydroxyapatite nanothick coatings for biomedical applications. J Mech Behav Biomed Mater 4:1046–1056

    Article  Google Scholar 

  96. Wang J, Chen X, Yang X, Xu S, Zhang X, Gou Z (2011) A facile pollutant-free approach toward a series of nutritionally effective calcium phosphate nanomaterials for food and drink additives. J Nanopart Res 13:1039–1048

    Article  Google Scholar 

  97. Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M (2011) Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater 7:4029–4036

    Article  Google Scholar 

  98. Mostaghaci B, Loretz B, Haberkorn R, Kickelbick G, Lehr CM (2013) One-step synthesis of nanosized and stable amino-functionalized calcium phosphate particles for DNA transfection. Chem Mater 25:3667–3674

    Article  Google Scholar 

  99. Lee DSH, Pai Y, Chang S, Kim DH (2016) Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Mater Sci Eng C 58:971–976

    Article  Google Scholar 

  100. Traykova T, Aparicio C, Ginebra MP, Planell JA (2006) Bioceramics as nanomaterials. Nanomedicine 1:91–106

    Article  Google Scholar 

  101. Grainger DW, Castner DG (2008) Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv Mater 20:867–877

    Article  Google Scholar 

  102. Nelson KG (1972) The Kelvin equation and solubility of small particles. J Pharmacol Sci 61:479–480

    Article  Google Scholar 

  103. Fan C, Chen J, Chen Y, Ji J, Teng HH (2006) Relationship between solubility and solubility product: the roles of crystal sizes and crystallographic directions. Geochim Cosmochim Acta 70:3820–3829

    Article  Google Scholar 

  104. Sato M, Webster TJ (2004) Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Dev 1:105–114

    Article  Google Scholar 

  105. Hahn H (2003) Unique features and properties of nanostructured materials. Adv Eng Mater 5:277–284

    Article  Google Scholar 

  106. Aronov D, Karlov A, Rosenman G (2007) Hydroxyapatite nanoceramics: basic physical properties and biointerface modification. J Eur Ceram Soc 27:4181–4186

    Article  Google Scholar 

  107. Ramsden JJ, Freeman J (2009) The nanoscale. Nanotechnol Percept 5:3–25

    Article  Google Scholar 

  108. Rempel AA (2007) Nanotechnologies. Properties and applications of nanostructured materials. Russ Chem Rev 76:435–461

    Article  Google Scholar 

  109. Thomas V, Dean DR, Vohra YK (2006) Nanostructured biomaterials for regenerative medicine. Curr Nanosci 2:155–177

    Article  Google Scholar 

  110. Catledge SA, Fries MD, Vohra YK, Lacefield WR, Lemons JE, Woodard S, Venugopalan R (2002) Nanostructured ceramics for biomedical implants. J Nanosci Nanotechnol 2:1–20

    Article  Google Scholar 

  111. Balasundarama G, Webster TJ (2006) A perspective on nanophase materials for orthopedic implant applications. J Mater Chem 16:3737–3745

    Article  Google Scholar 

  112. Balasundarama G, Webster TJ (2006) Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine 1:169–176

    Article  Google Scholar 

  113. Padilla S, Izquierdo-Barba I, Vallet-Regí M (2008) High specific surface area in nanometric carbonated hydroxyapatite. Chem Mater 20:5942–5944

    Article  Google Scholar 

  114. Kalita SJ, Bhardwaj A, Bhatt HA (2007) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27:441–449

    Article  Google Scholar 

  115. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, Basel

    Google Scholar 

  116. Mann S (1986) The study of biominerals by high resolution transmission electron microscopy. Scan Electron Microsc Pt 2:393–413

    Google Scholar 

  117. Katsura N (1990) Nanospace theory for biomineralization. Dent Jpn (Tokyo) 27:57–63

    Google Scholar 

  118. Cuisinier FJG, Voegel JC, Yacaman J, Frank RM (1992) Structure of initial crystals formed during human amelogenesis. J Cryst Growth 116:314–318

    Article  Google Scholar 

  119. Cuisinier FJG, Steuer P, Senger B, Voegel JC, Frank RM (1993) Human amelogenesis: high resolution electron microscopy of nanometer-sized particles. Cell Tissue Res 273:175–182

    Article  Google Scholar 

  120. Brès EF, Moebus G, Kleebe HJ, Pourroy G, Werkmann J, Ehret G (1993) High resolution electron microscopy study of amorphous calcium phosphate. J Cryst Growth 129:149–162

    Article  Google Scholar 

  121. Layrolle P, Lebugle A (1994) Characterization and reactivity of nanosized calcium phosphate prepared in anhydrous ethanol. Chem Mater 6:1996–2004

    Article  Google Scholar 

  122. Cui FZ, Wen HB, Zhang HB, Ma CL, Li HD (1994) Nanophase hydroxyapatite-like crystallites in natural ivory. J Mater Sci Lett 13:1042–1044

    Article  Google Scholar 

  123. Li YB, de Wijn J, Klein CPAT, de Meer SV, de Groot K (1994) Preparation and characterization of nanograde osteoapatite-like rod crystals. J Mater Sci Mater Med 5:252–255

    Article  Google Scholar 

  124. Li YB, de Groot K, de Wijn J, Klein CPAT, de Meer SV (1994) Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci Mater Med 5:326–331

    Article  Google Scholar 

  125. Shirkhanzadeh M (1994) X-ray diffraction and Fourier transform infrared analysis of nanophase apatite coatings prepared by electrocrystallization. Nanostruct Mater 4:677–684

    Article  Google Scholar 

  126. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483

    Article  Google Scholar 

  127. Chan CK, Kumar TSS, Liao S, Murugan R, Ngiam M, Ramakrishnan S (2006) Biomimetic nanocomposites for bone graft applications. Nanomedicine 1:177–188

    Article  Google Scholar 

  128. Mukhopadhyay A, Dasgupta AK, Chattopadhyay D, Chakrabarti K (2012) Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. Bioresour Technol 116:348–354

    Article  Google Scholar 

  129. Okada M, Furukawa K, Serizawa T, Yanagisawa Y, Tanaka H, Kawai T, Furuzono T (2009) Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir 25:6300–6306

    Article  Google Scholar 

  130. Mikołajczyk T, Rabiej S, Bogun M (2006) Analysis of the structural parameters of polyacrylonitrile fibers containing nanohydroxyapatite. J Appl Polym Sci 101:760–765

    Article  Google Scholar 

  131. Wilberforce SIJ, Finlayson CE, Best SM, Cameron RE (2011) The influence of hydroxyapatite (HA) microparticles (m) and nanoparticles (n) on the thermal and dynamic mechanical properties of poly-L-lactide. Polymer 52:2883–2890

    Article  Google Scholar 

  132. Sung YM, Lee JC, Yang JW (2004) Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J Cryst Growth 262:467–472

    Article  Google Scholar 

  133. Wang J, Shaw LL (2007) Morphology-enhanced low-temperature sintering of nanocrystalline hydroxyapatite. Adv Mater 19:2364–2369

    Article  Google Scholar 

  134. Fomin AS, Barinov SM, Ievlev VM, Smirnov VV, Mikhailov BP, Belonogov EK, Drozdova NA (2008) Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Dokl Chem 418:22–25

    Article  Google Scholar 

  135. Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G, Estournes C, Raimbeaux G, Rey C (2009) Nanocrystalline apatites: from powders to biomaterials. Powder Technol 190:118–122

    Article  Google Scholar 

  136. Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I (2008) Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol 206:221–230

    Article  Google Scholar 

  137. Skorokhod VV, Solonin SM, Dubok VA, Kolomiets LL, Katashinskii VP, Shinkaruk AV (2008) Pressing and sintering of nanosized hydroxyapatite powders. Powder Metall Metal Ceram 47:518–524

    Article  Google Scholar 

  138. Lin K, Chang J, Lu J, Wu W, Zeng Y (2007) Properties of β-Ca3(PO4)2 bioceramics prepared using nanosized powders. Ceram Int 33:979–985

    Article  Google Scholar 

  139. Lin K, Chen L, Qu H, Lu J, Chang J (2011) Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceram Int 37:2397–2403

    Article  Google Scholar 

  140. Tanaka Y, Hirata Y, Yoshinaka R (2003) Synthesis and characteristics of ultra-fine hydroxyapatite particles. J Ceram Process Res 4:197–201

    Google Scholar 

  141. Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565–6572

    Article  Google Scholar 

  142. Stupp SI, Ciegler GW (1992) Organoapatites: materials for artificial bone. I. Synthesis and microstructure. J Biomed Mater Res 26:169–183

    Article  Google Scholar 

  143. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2001) Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327–1333

    Article  Google Scholar 

  144. Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jayasinghe SN, Edirisinghe MJ (2004) In vitro assessment of the biological response to nanosized hydroxyapatite. J Mater Sci Mater Med 15:441–445

    Article  Google Scholar 

  145. Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230

    Article  Google Scholar 

  146. Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227

    Article  Google Scholar 

  147. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblast on nanophase ceramics. Biomaterials 21:1803–1810

    Article  Google Scholar 

  148. Smith IO, McCabe LR, Baumann MJ (2006) MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomedicine 1:189–194

    Article  Google Scholar 

  149. Nelson M, Balasundaram G, Webster TJ (2006) Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J Nanomedicine 1:339–349

    Google Scholar 

  150. Liu H, Yazici H, Ergun C, Webster TJ, Bermek H (2008) An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater 4:1472–1479

    Article  Google Scholar 

  151. Sato M, Sambito MA, Aslani A, Kalkhoran NM, Slamovich EB, Webster TJ (2006) Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials 27:2358–2369

    Article  Google Scholar 

  152. Thian ES, Huang J, Best SM, Barber ZH, Brooks RA, Rushton N, Bonfield W (2006) The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials 27:2692–2698

    Article  Google Scholar 

  153. Palin E, Liu H, Webster TJ (2005) Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 16:1828–1835

    Article  Google Scholar 

  154. Smoak M, Hogan K, Kriegh L, Chen C, Terrell LKB, Qureshi AT, Monroe TW, Gimble JM, Hayes DJ (2015) Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures. J Nanopart Res 17:182–196

    Article  Google Scholar 

  155. Sun W, Chu C, Wang J, Zhao H (2007) Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite. J Mater Sci Mater Med 18:677–683

    Article  Google Scholar 

  156. Ergun C, Liu H, Webster TJ, Olcay E, Yılmaz Ş, Sahin FC (2008) Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios. J Biomed Mater Res A 85A:236–241

    Article  Google Scholar 

  157. Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ (2003) Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Biomed Mater Eng 13:115–124

    Google Scholar 

  158. Zhou DS, Zhao KB, Li Y, Cui FZ, Lee IS (2006) Repair of segmental defects with nano-hydroxyapatite/collagen/PLA composite combined with mesenchymal stem cells. J Bioact Compat Polym 21:373–384

    Article  Google Scholar 

  159. Khanna R, Katti KS, Katti DR (2011) Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone. Acta Biomater 7:1173–1183

    Article  Google Scholar 

  160. Xu Z, Sun J, Liu CS, Wei J (2009) Effect of hydroxyapatite nanoparticles of different concentrations on rat osteoblast. Mater Sci Forum 610–613:1364–1369

    Article  Google Scholar 

  161. Okada S, Nagai A, Oaki Y, Komotori J, Imai H (2011) Control of cellular activity of fibroblasts on size-tuned fibrous hydroxyapatite nanocrystals. Acta Biomater 7:1290–1297

    Article  Google Scholar 

  162. Kalia P, Vizcay-Barrena G, Fan JP, Warley A, di Silvio L, Huang J (2014) Nanohydroxyapatite shape and its potential role in bone formation: an analytical study. J R Soc Interface 11:20140004. (11 pages)

    Article  Google Scholar 

  163. Bansal M, Kaushik M, Khattak BBP, Sharma A (2014) Comparison of nanocrystalline hydroxyapatite and synthetic resorbable hydroxyapatite graft in the treatment of intrabony defects: a clinical and radiographic study. J Indian Soc Periodontol 18:213–219

    Article  Google Scholar 

  164. Krut’ko VK, Kulak AI, Lesnikovich LA, Trofimova IV, Musskaya ON, Zhavnerko GK, Paribok IV (2007) Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel. Russ J Gen Chem 77:336–342

    Article  Google Scholar 

  165. Severin AV, Komarov VF, Bozhevol’nov VE, Melikhov IV (2005) Morphological selection in suspensions of nanocrystalline hydroxylapatite leading to spheroidal aggregates. Russ J Inorg Chem 50:72–77

    Google Scholar 

  166. Biggemann D, da Silva MHP, Rossi AM, Ramirez AJ (2008) High-resolution transmission electron microscopy study of nanostructured hydroxyapatite. Microsc Microanal 14:433–438

    Article  Google Scholar 

  167. Hagmeyer D, Ganesan K, Ruesing J, Schunk D, Mayer C, Dey A, Sommerdijk NAJM, Epple M (2011) Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids. J Mater Chem 21:9219–9223

    Article  Google Scholar 

  168. Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan TT, Altinoğlu EI, Tabaković A, Parette MR, Rouse SM, Ruiz-Velasco V, Adair JH (2008) Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 8:4116–4121

    Article  Google Scholar 

  169. Welzel T, Meyer-Zaika W, Epple M (2004) Continuous preparation of functionalised calcium phosphate nanoparticles with adjustable crystallinity. Chem Commun 1204–1205

    Google Scholar 

  170. Nichols HL, Zhang N, Zhang J, Shi D, Bhaduri S, Wen X (2007) Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. J Biomed Mater Res A 82A:373–382

    Article  Google Scholar 

  171. Bouladjine A, Al-Kattan A, Dufour P, Drouet C (2009) New advances in nanocrystalline apatite colloids intended for cellular drug delivery. Langmuir 25:12256–12265

    Article  Google Scholar 

  172. Rey C, Hina A, Tofighi A, Glimcher MJ (1995) Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cell Mater 5:345–356

    Google Scholar 

  173. Dorozhkin SV (2015) Calcium orthophosphate bioceramics. Ceram Int 41:13913–13966

    Article  Google Scholar 

  174. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  175. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufmane MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R 58:77–116

    Article  Google Scholar 

  176. Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826

    Article  Google Scholar 

  177. Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    Article  Google Scholar 

  178. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  Google Scholar 

  179. Ji B, Gao H (2006) Elastic properties of nanocomposite structure of bone. Compos Sci Technol 66:1212–1218

    Article  Google Scholar 

  180. Wang L, Nancollas GH, Henneman ZJ, Klein E, Weiner S (2006) Nanosized particles in bone and dissolution insensitivity of bone mineral. Biointerphases 1:106–111

    Article  Google Scholar 

  181. Xie B, Nancollas GH (2011) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci U S A 107:22369–22370

    Article  Google Scholar 

  182. Hu YY, Rawal A, Schmidt-Rohr K (2011) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A 107:22425–22429

    Article  Google Scholar 

  183. Gao H, Ji B, Jager IL, Arz E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci U S A 100:5597–5660

    Article  Google Scholar 

  184. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A 103:17741–17746

    Article  Google Scholar 

  185. Currey JD (2006) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  186. Porter AE, Nalla RK, Minor A, Jinschek JR, Kisielowski C, Radmilovic V, Kinney JH, Tomsia AP, Ritchie RO (2005) A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 26:7650–7660

    Article  Google Scholar 

  187. Kirkham J, Brookes SJ, Shore RC, Wood SR, Smith DA, Zhang J, Chen H, Robinson C (2002) Physico-chemical properties of crystal surfaces in matrix-mineral interactions during mammalian biomineralisation. Curr Opin Colloid Interface Sci 7:124–132

    Article  Google Scholar 

  188. Daculsi G, Mentanteau J, Kerebel LM, Mitre D (1984) Length and shape of enamel crystals. Calcif Tissue Int 36:550–555

    Article  Google Scholar 

  189. Robinson C, Connell S, Kirkham J, Shorea R, Smith A (2004) Dental enamel – a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J Mater Chem 14:2242–2248

    Article  Google Scholar 

  190. Chen H, Tang Z, Liu J, Sun K, Chang SR, Peters MC, Mansfield JF, Czajka-Jakubowska A, Clarkson BH (2006) Acellular synthesis of a human enamel-like microstructure. Adv Mater 18:1846–1851

    Article  Google Scholar 

  191. Chen H, Clarkson BH, Sun K, Mansfield JF (2005) Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci 288:97–103

    Article  Google Scholar 

  192. Robinson C (2007) Self-oriented assembly of nano-apatite particles: a subunit mechanism for building biological mineral crystals. J Dent Res 86:677–679

    Article  Google Scholar 

  193. Cui FZ, Ge J (2007) New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J Tissue Eng Regen Med 1:185–191

    Article  Google Scholar 

  194. He LH, Swain MV (2007) Enamel – a “metallic-like” deformable biocomposite. J Dent 35:431–437

    Article  Google Scholar 

  195. Nelson SJ (2009) Wheeler’s dental anatomy, physiology and occlusion, 9th edn. W. B. Saunders, Philadelphia

    Google Scholar 

  196. Lenton S, Nylander T, Teixeira SCM, Holt C (2015) A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Sci Technol 95:3–14

    Article  Google Scholar 

  197. Suvorova EI, Buffat PA (1999) Electron diffraction from micro- and nanoparticles of hydroxyapatite. J Microsc 196:46–58

    Article  Google Scholar 

  198. Panda RN, Hsieh MF, Chung RJ, Chin TS (2001) X-ray diffractometry and X-ray photoelectron spectroscopy investigations of nanocrytalline hydroxyapatite synthesized by a hydroxide gel technique. Jpn J Appl Phys 40:5030–5035

    Article  Google Scholar 

  199. Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64:193–199

    Article  Google Scholar 

  200. Eichert D, Sfihi H, Combes C, Rey C (2004) Specific characteristics of wet nanocrystalline apatites. Consequences on biomaterials and bone tissue. Key Eng Mater 254-256:927–930

    Article  Google Scholar 

  201. Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C 27:198–205

    Article  Google Scholar 

  202. Eichert D, Drouet C, Sfihi H, Rey C, Combes C (2007) Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendall JB (ed) Biomaterials research advances. Nova Science Publishers, New York, pp 93–143

    Google Scholar 

  203. Aronov D, Rosenman G (2007) Trap state spectroscopy studies and wettability modification of hydroxyapatite nanobioceramics. J Appl Phys 101:034701. (5 pages)

    Article  Google Scholar 

  204. Jäger C, Welzel T, Meyer-Zaika W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44:573–580

    Article  Google Scholar 

  205. Isobe T, Nakamura S, Nemoto R, Senna M, Sfihi H (2002) Solid-state double nuclear magnetic resonance of calcium phosphate nanoparticules synthesized by wet-mechanochemical reaction. J Phys Chem B 106:5169–5176

    Article  Google Scholar 

  206. Bertinetti L, Tampieri A, Landi E, Ducati C, Midgley PA, Coluccia S, Martra G (2007) Surface structure, hydration, and cationic sites of nanohydroxyapatite: UHR-TEM, IR, and microgravimetric studies. J Phys Chem C 111:4027–4035

    Article  Google Scholar 

  207. Bertinetti L, Tampieri A, Landi E, Bolis V, Busco C, Martra G (2008) Surface structure, hydration and cationic sites of nanohydroxyapatite. Key Eng Mater 361–363:87–90

    Article  Google Scholar 

  208. Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 25:5647–5654

    Article  Google Scholar 

  209. Gopi D, Indira J, Prakash VCA, Kavitha L (2009) Spectroscopic characterization of porous nanohydroxyapatite synthesized by a novel amino acid soft solution freezing method. Spectrochim Acta A 74A:282–284

    Article  Google Scholar 

  210. Ospina CA, Terra J, Ramirez AJ, Farina M, Ellis DE, Rossi AM (2012) Experimental evidence and structural modeling of nonstoichiometric (010) surfaces coexisting in hydroxyapatite nano-crystals. Colloids Surf B: Biointerfaces 89:15–22

    Article  Google Scholar 

  211. Song K, Kim YJ, Kim YI, Kim JG (2012) Application of theta-scan precession electron diffraction to structure analysis of hydroxyapatite nanopowder. J Electron Microsc 61:9–15

    Google Scholar 

  212. Bian S, Du LW, Gao YX, Huang J, Gou BD, Li X, Liu Y, Zhang TL, Wang K (2012) Crystallization in aggregates of calcium phosphate nanocrystals: a logistic model for kinetics of fractal structure development. Cryst Growth Des 12:3481–3488

    Article  Google Scholar 

  213. Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46

    Article  Google Scholar 

  214. Pajchel L, Kolodziejski W (2013) Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling. J Nanopart Res 15:1868. (15 pages)

    Article  Google Scholar 

  215. Sakhno Y, Ivanchenko P, Iafisco M, Tampieri A, Martra G (2015) A step toward control of the surface structure of biomimetic hydroxyapatite nanoparticles: effect of carboxylates on the {010} P-rich/Ca-rich facets ratio. J Phys Chem C 119:5928–5937

    Article  Google Scholar 

  216. Ospina CA, Terra J, Ramirez AJ, Ellis DE, Rossi AM (2012) Simulations of hydroxyapatite nanocrystals for HRTEM images calculations. Key Eng Mater 493–494:763–767

    Google Scholar 

  217. Rossi AM, da Silva MHP, Ramirez AJ, Biggemann D, Caraballo MM, Mascarenhas YP, Eon JG, Moure GT (2007) Structural properties of hydroxyapatite with particle size less than 10 nanometers. Key Eng Mater 330–332:255–258

    Article  Google Scholar 

  218. Ramirez CAO, Costa AM, Bettini J, Ramirez AJ, da Silva MHP, Rossi AM (2009) Structural properties of nanostructured carbonate apatites. Key Eng Mater 396–398:611–614

    Article  Google Scholar 

  219. Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houten JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238

    Article  Google Scholar 

  220. Sakhno Y, Bertinetti L, Iafisco M, Tampieri A, Roveri N, Martra G (2010) Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J Phys Chem C 114:16640–16648

    Article  Google Scholar 

  221. Bolis V, Busco C, Martra G, Bertinetti L, Sakhno Y, Ugliengo P, Chiatti F, Corno M, Roveri N (2012) Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H2O and CO. Phil Trans A Math Phys Eng Sci 37:1313–1336

    Article  Google Scholar 

  222. Zyman ZZ, Epple M, Rokhmistrov D, Glushko V (2009) On impurities and the internal structure in precipitates occurring during the precipitation of nanocrystalline calcium phosphate. Mater Wiss Werkst 40:297–301

    Article  Google Scholar 

  223. Delgado-López JM, Frison R, Cervellino A, Gómez-Morales J, Guagliardi A, Masciocchi N (2014) Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv Funct Mater 24:1090–1099

    Article  Google Scholar 

  224. Rey C, Combes C, Drouet C, Cazalbou S, Grossin D, Brouillet F, Sarda S (2014) Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Prog Cryst Growth Charact Mater 60:63–73

    Article  Google Scholar 

  225. Cazalbou S, Combes C, Eichert D, Rey C (2004) Adaptative physico-chemistry of bio-related calcium phosphates. J Mater Chem 14:2148–2153

    Article  Google Scholar 

  226. Eichert D, Salomé M, Banu M, Susini J, Rey C (2005) Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy. Spectrochim Acta B 60B:850–858

    Article  Google Scholar 

  227. Rosenman G, Aronov D, Oster L, Haddad J, Mezinskis G, Pavlovska I, Chaikina M, Karlov A (2007) Photoluminescence and surface photovoltage spectroscopy studies of hydroxyapatite nano-bio-ceramics. J Lumin 122–123:936–938

    Article  Google Scholar 

  228. Melikhov IV, Teterin YA, Rudin VN, Teterin AY, Maslakov KI, Severin AV (2009) An X-ray electron study of nanodisperse hydroxyapatite. Russ J Phys Chem A 83:91–97

    Article  Google Scholar 

  229. Wu CY, Young D, Martel J, Young JD (2015) A story told by a single nanoparticle in the body fluid: demonstration of dissolution-reprecipitation of nanocrystals in a biological system. Nanomedicine (London) 10:2659–2676

    Article  Google Scholar 

  230. Aronov D, Rosenman G, Karlov A, Shashkin A (2006) Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification. Appl Phys Lett 88:163902. (3 pages)

    Article  Google Scholar 

  231. Rau JV, Generosi A, Ferro D, Minozzi F, Paci B, Albertini VR, Dolci G, Barinov SM (2009) In situ time-resolved X-ray diffraction study of evolution of nanohydroxyapatite particles in physiological solution. Mater Sci Eng C 29:1140–1143

    Article  Google Scholar 

  232. Zhao W, Xu Z, Yang Y, Sahai N (2014) Surface energetics of the hydroxyapatite nanocrystal – water interface: a molecular dynamics study. Langmuir 30:13283–13292

    Article  Google Scholar 

  233. Arora A (2004) Ceramics in nanotech revolution. Adv Eng Mater 6:244–247

    Article  Google Scholar 

  234. Mao Y, Park TJ, Zhang F, Zhou H, Wong SS (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3:1122–1139

    Article  Google Scholar 

  235. Ioku K, Yoshimura M (1991) Stochiometric apatite fine single crystals by hydrothermal synthesis. Phosphorus Res Bull 1:15–20

    Google Scholar 

  236. Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT (2007) Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 28:2275–2280

    Article  Google Scholar 

  237. Guo X, Xiao P, Liu J, Shen Z (2004) Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering. J Am Ceram Soc 88:1026–1029

    Article  Google Scholar 

  238. Brown PW, Constantz B (eds) (1994) Hydroxyapatite and related materials. CRC Press, Boca Raton

    Google Scholar 

  239. Amjad Z (ed) (1997) Calcium phosphates in biological and industrial systems. Kluwer Academic Publishers, Boston

    Google Scholar 

  240. Dorozhkin SV (2012) Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford, Singapore

    Book  Google Scholar 

  241. Dorozhkin SV (2016) Calcium orthophosphate-based bioceramics and biocomposites. Wiley-VCH, Weinheim

    Book  Google Scholar 

  242. Komarov VF, Kibalchitz V (1979) Precipitation of apatite through highly saturated solutions. Moscow Univ Bull Chem Dic 2680–2685

    Google Scholar 

  243. Prakash KH, Kumar R, Ooi CP, Cheang P, Khor KA (2006) Conductometric study of precursor compound formation during wet-chemical synthesis of nanocrystalline hydroxyapatite. J Phys Chem B 110:24457–24462

    Article  Google Scholar 

  244. Tao J, Pan H, Wang J, Wu J, Wang B, Xu X, Tang R (2008) Evolution of amorphous calcium phosphate to hydroxyapatite probed by gold nanoparticles. J Phys Chem C 112:14929–14933

    Article  Google Scholar 

  245. Chane-Ching JY, Lebugle A, Rousselot I, Pourpoint A, Pelle F (2007) Colloidal synthesis and characterization of monocrystalline apatite nanophosphors. J Mater Chem 17:2904–2913

    Article  Google Scholar 

  246. Zyman ZZ, Rokhmistrov DV, Glushko VI (2010) Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation. J Mater Sci Mater Med 21:123–130

    Article  Google Scholar 

  247. Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (1999) Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition. J Biomed Mater Res 45:11–19

    Article  Google Scholar 

  248. Zhu X, Eibl O, Berthold C, Scheideler L, Geis-Gerstorfer J (2006) Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells. Nanotechnology 17:2711–2721

    Article  Google Scholar 

  249. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26:5414–5426

    Article  Google Scholar 

  250. Wang YJ, Lai C, Wei K, Tang SQ (2005) Influence of temperature, ripening time and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts. Mater Lett 59:1098–1104

    Article  Google Scholar 

  251. Li YB, Li D, Weng W (2008) Preparation of nano carbonate-substituted hydroxyapatite from an amorphous precursor. Int J Appl Ceram Technol 5:442–448

    Article  Google Scholar 

  252. Zhang S, Gonsalves KE (1997) Preparation and characterization of thermally stable nanohydroxyapatite. J Mater Sci Mater Med 8:25–28

    Article  Google Scholar 

  253. Ferraz M, Monteiro FJ, Manuel CM (2004) Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech 2:74–80

    Google Scholar 

  254. Ahn ES, Gleason NJ, Nakahira A, Ying JY (2001) Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett 1:149–153

    Article  Google Scholar 

  255. Mazelsky R, Hopkins RH, Kramer WE (1968) Czochralski-growth of calcium fluorophosphates. J Cryst Growth 3–4:260–264

    Article  Google Scholar 

  256. Loutts GB, Chai BHT (1993) Growth of high-quality single crystals of FAP (Ca5(PO4)3F) and its isomorphs. Proc SPIE Int Soc Opt Eng 1863:31–34

    Google Scholar 

  257. Siegel RW (1996) Creating nanophase materials. Sci Am 275:42–47

    Article  Google Scholar 

  258. Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  Google Scholar 

  259. Schmidt HK (2000) Nanoparticles for ceramic and nanocomposite processing. Mol Cryst Liq Cryst 353:165–179

    Article  Google Scholar 

  260. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  261. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  Google Scholar 

  262. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670

    Article  Google Scholar 

  263. de Mello Donegá C, Liljeroth P, Vanmaekelbergh D (2005) Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1:1152–1162

    Article  Google Scholar 

  264. Ma MG, Zhu JF (2010) Recent progress on fabrication of calcium-based inorganic biodegradable nanomaterials. Rec Pat Nanotechnol 4:164–170

    Article  Google Scholar 

  265. Chen F, Zhu Y, Wu J, Huang P, Cui D (2012) Nanostructured calcium phosphates: preparation and their application in biomedicine. Nano Biomed Eng 4:41–49

    Article  Google Scholar 

  266. Takagi S, Chow LC, Ishikawa K (1998) Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19:1593–1599

    Article  Google Scholar 

  267. Melikhov IV, Komarov VF, Severin AV, Bozhevol’nov VE, Rudin VN (2000) Two-dimensional crystalline hydroxyapatite. Dokl Phys Chem 373:355–358

    Google Scholar 

  268. Kumta P, Sfeir C, Lee DH, Olton D, Choi D (2005) Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater 1:65–83

    Article  Google Scholar 

  269. Mollazadeh S, Javadpour J, Khavandi A (2007) In situ synthesis and characterization of nanosized hydroxyapatite in poly(vinyl alcohol) matrix. Ceram Int 33:1579–1583

    Article  Google Scholar 

  270. Bouyer E, Gitzhofer F, Boulos MI (2000) Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med 11:523–531

    Article  Google Scholar 

  271. Pang YX, Bao X (2003) Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 23:1697–1704

    Article  Google Scholar 

  272. Kumar R, Prakash KH, Cheang P, Khor KA (2004) Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 20:5196–5200

    Article  Google Scholar 

  273. Cao LY., Zhang CB, Huang JF (2005) Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method. Mater Lett 59:1902–1906

    Google Scholar 

  274. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC (2003) Some important factors in the wet precipitation process of hydroxyapatite. Mater Des 24:197–202

    Article  Google Scholar 

  275. Liu Y, Hou D, Wang G (2004) A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys 86:69–73

    Article  Google Scholar 

  276. Saha SK, Banerjee A, Banerjee S, Bose S (2009) Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: role of templates in controlling morphology. Mater Sci Eng C 29:2294–2301

    Article  Google Scholar 

  277. Shanthi PMSL, Ashok M, Balasubramanian T, Riyasdeen A, Akbarsha MA (2009) Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater Lett 63:2123–2125

    Article  Google Scholar 

  278. Phillips MJ, Darr JA, Luklinska ZB, Rehman I (2003) Synthesis and characterization of nanobiomaterials with potential osteological applications. J Mater Sci Mater Med 14:875–882

    Article  Google Scholar 

  279. Ramesh S, Tan CY, Sopyan I, Hamdi M, Teng WD (2007) Consolidation of nanocrystalline hydroxyapatite powder. Sci Technol Adv Mater 8:124–130

    Article  Google Scholar 

  280. Shi HB, Zhong H, Liu Y, Gu JY, Yang CS (2007) Effect of precipitation method on stoichiometry and morphology of hydroxyapatite nanoparticles. Key Eng Mater 330–332:271–274

    Article  Google Scholar 

  281. Poinern GE, Brundavanam RK, Mondinos N, Jiang ZT (2009) Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason Sonochem 16:469–474

    Article  Google Scholar 

  282. Doğan Ö, Öner M (2008) The influence of polymer architecture on nanosized hydroxyapatite precipitation. J Nanosci Nanotechnol 8:667–674

    Article  Google Scholar 

  283. Loo SCJ, Siew YE, Ho S, Boey FYC, Ma J (2008) Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J Mater Sci Mater Med 19:1389–1397

    Article  Google Scholar 

  284. Guo X, Gough JE, Xiao P, Liu J, Shen Z (2007) Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J Biomed Mater Res A 82A:1022–1032

    Article  Google Scholar 

  285. Iafisco M, Palazzo B, Marchetti M, Margiotta N, Ostuni R, Natile G, Morpurgo M, Gandin V, Marzano C, Roveri N (2009) Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. J Mater Chem 19:8385–8392

    Article  Google Scholar 

  286. Wang P, Li C, Gong H, Jiang X, Wang H, Li K (2010) Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol 203:315–321

    Article  Google Scholar 

  287. Leskiv M, Lagoa ALC, Urch H, Schwiertz J, da Piedade MEM, Epple M (2009) Energetics of calcium phosphate nanoparticle formation by the reaction of Ca(NO3)2 with (NH4)2HPO4. J Phys Chem C 113:5478–5484

    Article  Google Scholar 

  288. Rodrigues LR, Motisuke M, Zavaglia CAC (2009) Synthesis of nanostructured hydroxyapatite: a comparative study between sol-gel and aqueous solution precipitation. Key Eng Mater 396–398:623–626

    Article  Google Scholar 

  289. Okada M, Furuzono T (2011) Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks. J Colloid Interface Sci 360:457–462

    Article  Google Scholar 

  290. Alobeedallah H, Coster H, Dehghani F, Ellis J, Rohanizadeh R (2011) The preparation of nanostructured hydroxyapatite in organic solvents for clinical applications. Trends Biomater Artif Organs 25:12–19

    Google Scholar 

  291. Lagno F, Rocha SDF, Katsarou L, Demopoulos GP (2012) Supersaturation-controlled synthesis of dicalcium phosphate dihydrate and nanocrystalline calcium-deficient hydroxyapatite. Ind Eng Chem Res 51:6605–6612

    Article  Google Scholar 

  292. Shafiei F, Behroozibakhsh M, Moztarzadeh F, Haghbin-Nazarpak M, Tahriri M (2012) Nanocrystalline fluorine-substituted hydroxyapatite [Ca5(PO4)3(OH)1-xFx (0≤x≤1)] for biomedical applications: preparation and characterization. Micro Nano Lett 7:109–114

    Article  Google Scholar 

  293. Khalid M, Mujahid M, Amin S, Rawat RS, Nusair A, Deen GR (2013) Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int 39:39–50

    Article  Google Scholar 

  294. Iyyappan E, Wilson P (2013) Synthesis of nanoscale hydroxyapatite particles using triton X-100 as an organic modifier. Ceram Int 39:771–777

    Article  Google Scholar 

  295. Gao S, Sun K, Li A, Wang H (2013) Synthesis and characterization of hydroxyapatite nanofiber by chemical precipitation method using surfactants. Mater Res Bull 48:1003–1006

    Article  Google Scholar 

  296. Mohandes F, Salavati-Niasari M, Fathi M, Fereshteh Z (2014) Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater Sci Eng C 45:29–36

    Article  Google Scholar 

  297. Pokale P, Shende S, Gade A, Rai M (2014) Biofabrication of calcium phosphate nanoparticles using the plant Mimusops elengi. Environ Chem Lett 12:393–399

    Article  Google Scholar 

  298. Ji X, Su P, Liu C, Song J, Liu C, Li J, Tan H, Wu F, Yang L, Fu R, Tang C, Cheng B (2015) A novel ethanol induced and stabilized hierarchical nanorods: hydroxyapatite nanopeanut. J Am Ceram Soc 98:1702–1705

    Article  Google Scholar 

  299. Roche KJ, Stanton KT (2014) Measurement of fluoride substitution in precipitated fluorhydroxyapatite nanoparticles. J Fluor Chem 161:102–109

    Article  Google Scholar 

  300. Stanić V, Dimitrijević S, Antonović DG, Jokić BM, Zec SP, Tanasković ST, Raičević S (2014) Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects. Appl Surf Sci 290:346–352

    Article  Google Scholar 

  301. Palanivelu R, Saral AM, Kumar AR (2014) Nanocrystalline hydroxyapatite prepared under various pH conditions. Spectrochim Acta A 131:37–41

    Article  Google Scholar 

  302. Mohandes F, Salavati-Niasari M, Fereshteh Z, Fathi M (2014) Novel preparation of hydroxyapatite nanoparticles and nanorods with the aid of complexing agents. Ceram Int 40:12227–12233

    Article  Google Scholar 

  303. Bi YG, Xu XS (2014) Study on nano-hydroxyapatite assisted preparing by ionic liquids. Adv Mater Res 1015:501–504

    Article  Google Scholar 

  304. Sundrarajan M, Jegatheeswaran S, Selvam S, Sanjeevi N, Balaji M (2015) The ionic liquid assisted green synthesis of hydroxyapatite nanoplates by Moringa oleifera flower extract: a biomimetic approach. Mater Des 88:1183–1190

    Article  Google Scholar 

  305. Gentile P, Wilcock CJ, Miller CA, Moorehead R, Hatton PV (2015) Process optimisation to control the physico-chemical characteristics of biomimetic nanoscale hydroxyapatites prepared using wet chemical precipitation. Materials 8:2297–2310

    Article  Google Scholar 

  306. Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A (2016) Synthesis of calcium phosphate nanoparticles in deep-eutectic choline chloride-urea medium: investigating the role of synthesis temperature on phase characteristics and physical properties. Ceram Int 42:2780–2788

    Article  Google Scholar 

  307. López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49–53

    Article  Google Scholar 

  308. Siddharthan A, Seshadri SK, Kumar TSS (2005) Rapid synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends Biomater Artif Organs 18:110–113

    Google Scholar 

  309. Ioku K, Yamauchi S, Fujimori H, Goto S, Yoshimura M (2002) Hydrothermal preparation of fibrous apatite and apatite sheet. Solid State Ionics 151:147–150

    Article  Google Scholar 

  310. Chaudhry AA, Haque S, Kellici S, Boldrin P, Rehman I, Khalid FA, Darr JA (2006) Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem Commun 21:2286–2288

    Article  Google Scholar 

  311. Cao M, Wang Y, Guo C, Qi Y, Hu C (2004) Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions. Langmuir 20:4784–4786

    Article  Google Scholar 

  312. Guo X, Xiao P (2006) Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process. J Eur Ceram Soc 26:3383–3391

    Article  Google Scholar 

  313. Xin R, Yu K (2009) Ultrastructure characterization of hydroxyapatite nanoparticles synthesized by EDTA-assisted hydrothermal method. J Mater Sci 44:4205–4209

    Article  Google Scholar 

  314. Zhang HB, Zhou KC, Li ZY, Huang SP (2009) Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids 70:243–248

    Article  Google Scholar 

  315. Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377

    Article  Google Scholar 

  316. Xin R, Ren F, Leng Y (2010) Synthesis and characterization of nano-crystalline calcium phosphates with EDTA-assisted hydrothermal method. Mater Des 31:1691–1694

    Article  Google Scholar 

  317. Yan L, Li Y, Deng Z, Zhuang J, Sun X (2005) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int J Inorg Mater 2001(3):633–637

    Google Scholar 

  318. Zhang F, Zhou Z, Yang S, Mao L, Chen H, Yu X (2005) Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater Lett 59:1422–1425

    Article  Google Scholar 

  319. Pathi SP, Lin DD, Dorvee JR, Estroff LA, Fischbach C (2011) Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomaterials 32:5112–5122

    Article  Google Scholar 

  320. Zhu A, Lu Y, Si Y, Dai S (2011) Frabicating hydroxyapatite nanorods using a biomacromolecule template. Appl Surf Sci 257:3174–3179

    Article  Google Scholar 

  321. Wang YZ, Fu Y (2011) Microwave-hydrothermal synthesis and characterization of hydroxyapatite nanocrystallites. Mater Lett 65:3388–3390

    Article  Google Scholar 

  322. Lin K, Liu X, Chang J, Zhu Y (2011) Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors. Nanoscale 3:3052–3055

    Article  Google Scholar 

  323. Ren F, Ding Y, Ge X, Lu X, Wang K, Leng Y (2012) Growth of one-dimensional single-crystalline hydroxyapatite nanorods. J Cryst Growth 349:75–82

    Article  Google Scholar 

  324. Nathanael AJ, Hong SI, Mangalaraj D, Ponpandian N, Chen PC (2012) Template-free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties. Cryst Growth Des 12:3565–3574

    Article  Google Scholar 

  325. Nathanael AJ, Mangalaraj D, Hong SI, Masuda Y, Rhee YH, Kim HW (2013) Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method. Mater Chem Phys 137:967–976

    Article  Google Scholar 

  326. Nagata F, Yamauchi Y, Tomita M, Kato K (2013) Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior. J Ceram Soc Jpn 121:797–801

    Article  Google Scholar 

  327. Ramedani A, Yazdanpanah A, Moztarzadeh F, Mozafari M (2014) On the use of nanoliposomes as soft templates for controlled nucleation and growth of hydroxyapatite nanocrystals under hydrothermal conditions. Ceram Int 40:9377–9381

    Article  Google Scholar 

  328. Nga NK, Giang LT, Huy TQ, Viet PH, Migliaresi C (2014) Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering. Colloids Surf B: Biointerfaces 116:666–673

    Article  Google Scholar 

  329. Taheri MM, Kadir MRA, Shokuhfar T, Hamlekhan A, Assadian M, Shirdar MR, Mirjalili A (2015) Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceram Int 41:9867–9872

    Article  Google Scholar 

  330. Jin X, Zhuang J, Zhang Z, Guo H, Tan J (2015) Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. J Colloid Interface Sci 443:125–130

    Article  Google Scholar 

  331. Jin X, Chen X, Cheng Y, Wang L, Hu B, Tan J (2015) Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. J Colloid Interface Sci 450:151–158

    Article  Google Scholar 

  332. Wang Y, Ren X, Ma X, Su W, Zhang Y, Sun X, Li X (2015) Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores. Cryst Growth Des 15:1949–1956

    Article  Google Scholar 

  333. Byrappa K, Haber M (2002) Handbook of hydrothermal technology: a technology for crystal growth and materials processing. Noyes Publications, New Jersey

    Google Scholar 

  334. Yu-Song P (2011) Surface modification of nanocrystalline hydroxyapatite. Micro Nano Lett 6:129–132

    Article  Google Scholar 

  335. Gopi D, Govindaraju KM, Victor CAP, Kavitha L, Rajendiran N (2008) Spectroscopic investigations of nanohydroxyapatite powders synthesized by conventional and ultrasonic coupled sol-gel routes. Spectrochim. Acta A Mol Biomol Spectrosc 70:1243–1245

    Article  Google Scholar 

  336. Rajabi-Zamani AH, Behnamghader A, Kazemzadeh A (2008) Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol-gel method. Mater Sci Eng C 28:1326–1329

    Article  Google Scholar 

  337. Sopyan I, Toibah AR, Natasha AN (2008) Nanosized bioceramic hydroxyapatite powders via sol-gel method. Int J Mech Mater Eng 3:133–138

    Google Scholar 

  338. Yuan Y, Liu C, Zhang Y, Shan X (2008) Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template. Mater Chem Phys 112:275–280

    Article  Google Scholar 

  339. Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, Betzel C (2004) Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature. J Cryst Growth 263:517–523

    Article  Google Scholar 

  340. Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ (2009) Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 9:1459–1462

    Article  Google Scholar 

  341. Darroudi M, Eshtiagh-Hosseini H, Housaindokht MR, Youssefi A (2010) Preparation and characterization of fluorohydroxyapatite nanopowders by nonalkoxide sol-gel method. Dig J Nanomater Biostruct 5:29–33

    Google Scholar 

  342. Jadalannagari S, More S, Kowshik M, Ramanan SR (2011) Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Mater Sci Eng C 31:1534–1538

    Article  Google Scholar 

  343. Montazeri N, Jahandideh R, Biazar E (2011) Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. Int J Nanomedicine 6:197–201

    Google Scholar 

  344. Vijayalakshmi U, Rajeswari S (2012) Influence of process parameters on the sol-gel synthesis of nano hydroxyapatite using various phosphorus precursors. J Sol-Gel Sci Technol 63:45–55

    Article  Google Scholar 

  345. Salimi MN, Bridson RH, Grover LM, Leeke GA (2012) Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol 218:109–118

    Article  Google Scholar 

  346. Rogojan R, Andronescu E, Ghitulica C, Birsan M, Voicu G, Stoleriu S, Melinescu A, Ianculescu A (2012) Analysis of the structure and morphology of hydroxyapatite nanopowder obtained by sol-gel and pirosol methods. Adv Mater Res 590:63–67

    Article  Google Scholar 

  347. Bakan F, Laçin O, Sarac H (2013) A novel low temperature sol-gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 233:295–302

    Article  Google Scholar 

  348. Kurgan N, Karbivskyy V, Kasyanenko V (2015) Morphology and electronic structure of nanoscale powders of calcium hydroxyapatite. Nanoscale Res Lett 10:41. (5 pages)

    Article  Google Scholar 

  349. Li B, Wang XL, Guo B, Xiao YM, Fan HS, Zhang XD (2007) Preparation and characterization of nano hydroxyapatite. Key Eng Mater 330–332:235–238

    Google Scholar 

  350. Tas AC (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 21:1429–1438

    Article  Google Scholar 

  351. Wu YS, Lee YH, Chang HC (2009) Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method. Mater Sci Eng C 29:237–241

    Article  Google Scholar 

  352. Swain SK, Sarkar D (2011) A comparative study: hydroxyapatite spherical nanopowders and elongated nanorods. Ceram Int 37:2927–2930

    Article  Google Scholar 

  353. Martínez-Pérez CA, García-Montelongo J, Garcia Casillas PE, Farias-Mancilla JR, Romero MH (2012) Preparation of hydroxyapatite nanoparticles facilitated by the presence of β-cyclodextrin. J Alloys Compd 536(Suppl 1):S432–S436

    Article  Google Scholar 

  354. Rameshbabu N, Kumar TSS, Murugan R, Rao KP (2005) Mechanochemical synthesis of nanocrystalline fluorinated hydroxyapatite. Int J Nanosci 4:643–649

    Article  Google Scholar 

  355. Yeong KCB, Wang J, Ng SC (2001) Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22:2705–2712

    Article  Google Scholar 

  356. Coreno JA, Coreno OA, Cruz RJJ, Rodriguez CC (2005) Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Opt Mater 27:1281–1285

    Article  Google Scholar 

  357. el Briak-Ben Abdeslam H, Mochales C, Ginebra MP, Nurit J, Planell JA, Boudeville P (2003) Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: a kinetic study. J Biomed Mater Res A 67A:927–937

    Article  Google Scholar 

  358. Nakamura S, Isobe T, Senna M (2001) Hydroxyapatite nano sol prepared via a mechanochemical route. J Nanopart Res 3:57–61

    Article  Google Scholar 

  359. Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P (2009) Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett 63:543–546

    Article  Google Scholar 

  360. Sharifah A, Iis S, Mohd H, Singh R (2011) Mechanochemical synthesis of nanosized hydroxyapatite powder and its conversion to dense bodies. Mater Sci Forum 694:118–122

    Article  Google Scholar 

  361. Fereshteh Z, Fathi M, Mozaffarinia R (2014) Synthesis and characterization of fluorapatite nanoparticles via a mechanochemical method. J Clust Sci 26:1041–1053

    Article  Google Scholar 

  362. Silva CC, Graça MPF, Valente MA, Sombra ASB (2007) Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. J Mater Sci 42:3851–3855

    Article  Google Scholar 

  363. Zahrani EM, Fathi MH (2009) The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder. Ceram Int 35:2311–2323

    Article  Google Scholar 

  364. Mochales C, Wilson RM, Dowker SEP, Ginebra MP (2011) Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: structural characterization. J Alloys Compd 509:7389–7394

    Article  Google Scholar 

  365. Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R (2013) Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Ceram Int 39:5751–5763

    Article  Google Scholar 

  366. Fahami A, Nasiri-Tabrizi B (2014) Mechanochemical behavior of CaCO3–P2O5–CaF2 system to produce carbonated fluorapatite nanopowder. Ceram Int 40:14939–14946

    Article  Google Scholar 

  367. Mandal T, Mishra BK, Garg A, Chaira D (2014) Optimization of milling parameters for the mechanosynthesis of nanocrystalline hydroxyapatite. Powder Technol 253:650–656

    Article  Google Scholar 

  368. Fathi MH, Zahrani EM (2009) Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying. J Alloys Compd 475:408–414

    Article  Google Scholar 

  369. Fathi MH, Zahrani EM (2009) Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. J Cryst Growth 311:1392–1403

    Article  Google Scholar 

  370. Xu JL, Khor KA, Dong ZL, Gu YW, Kumar R, Cheang P (2004) Preparation and characterization of nanosized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Mater Sci Eng A 374:101–108

    Article  Google Scholar 

  371. Xu JL, Khor KA, Kumar R, Cheang P (2006) RF induction plasma synthesized calcium phosphate nanoparticles. Key Eng Mater 309–311:511–514

    Article  Google Scholar 

  372. Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T (2008) Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr Appl Phys 8:270–272

    Article  Google Scholar 

  373. Cho JS, Kang YC (2008) Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compd 464:282–287

    Article  Google Scholar 

  374. Cho JS, Rhee SH (2013) Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. J Eur Ceram Soc 33:233–241

    Article  Google Scholar 

  375. Wang X, Zhuang J, Peng Q, Li Y (2006) Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods. Adv Mater 18:2031–2034

    Article  Google Scholar 

  376. Shirkhanzadeh M (1998) Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med 9:67–72

    Article  Google Scholar 

  377. Montalbert-Smith R, Palma CA, Arias JD, Montero ML (2009) Formation of hydroxyapatite nanosized and other apatites by electrolysis process. Key Eng Mater 396–398:579–582

    Article  Google Scholar 

  378. Gao JH, Guan SK, Chen J, Wang LG, Zhu SJ, Hu JH, Ren ZW (2011) Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy. Appl Surf Sci 257:2231–2237

    Article  Google Scholar 

  379. Nur A, Rahmawati A, Ilmi NI, Affandi S, Widjaja A, Setyawan H (2014) Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method. AIP Conf Proc 1586:86–91

    Article  Google Scholar 

  380. Krishna DSR, Siddharthan A, Seshadri SK, Kumar TSS (2007) A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci Mater Med 18:1735–1743

    Article  Google Scholar 

  381. Lak A, Mazloumi M, Mohajerani MS, Zanganeh S, Shayegh MR, Kajbafvala A, Arami H, Sadrnezhaad SK (2008) Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-size distribution via microwave irradiation. J Am Ceram Soc 91:3580–3584

    Article  Google Scholar 

  382. Kalita SJ, Verma S (2010) Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater Sci Eng C 30:295–303

    Article  Google Scholar 

  383. Mishra VK, Srivastava SK, Asthana BP, Kumar D (2012) Structural and spectroscopic studies of hydroxyapatite nanorods, formed via microwave-assisted synthesis route. J Am Ceram Soc 95:2709–2715

    Article  Google Scholar 

  384. Smolen D, Chudoba T, Malka I, Kedzierska A, Lojkowski W, Swieszkowski W, Kurzydlowski KJ, Kolodziejczyk-Mierzynska M, Lewandowska-Szumiel M (2013) Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation. Int J Nanomedicine 8:653–668

    Article  Google Scholar 

  385. Amer W, Abdelouahdi K, Ramananarivo HR, Zahouily M, Fihri A, Djessas K, Zahouily K, Varma RS, Solhy A (2014) Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. Cryst Eng Comm 16:543–549

    Article  Google Scholar 

  386. Nabiyouni M, Zhou H, Luchini TJF, Bhaduri SB (2014) Formation of nanostructured fluorapatite via microwave assisted solution combustion synthesis. Mater Sci Eng C 37:363–368

    Article  Google Scholar 

  387. Shavandi A, Bekhit AEDA, Ali A, Sun Z (2015) Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys 149:607–616

    Article  Google Scholar 

  388. Hassan MN, Mahmoud MM, El-Fattah AA, Kandil S (2016) Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram Int 42:3725–3744

    Article  Google Scholar 

  389. Shih WJ, Chen YF, Wang MC, Hon MH (2004) Crystal growth and morphology of the nanosized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method. J Cryst Growth 270:211–218

    Article  Google Scholar 

  390. Furuichi K, Oaki Y, Imai H (2006) Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin. Chem Mater 18:229–234

    Article  Google Scholar 

  391. Zhang Y, Lu J (2008) The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods. Nanotechnology 19:155608. (10 pages)

    Article  Google Scholar 

  392. Ito H, Oaki Y, Imai H (2008) Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase. Cryst Growth Des 8:1055–1059

    Article  Google Scholar 

  393. Hajiloo N, Ziaie F, Mehtieva SI (2012) Gamma-irradiated EPR response of nano-structure hydroxyapatite synthesised via hydrolysis method. Radiat Prot Dosim 148:487–491

    Article  Google Scholar 

  394. Chen F, Zhu Y (2015) Microwave-assisted synthesis of calcium phosphate nanostructured materials in liquid phase. Prog Chem 27:459–471

    Google Scholar 

  395. Wang MC, Chen HT, Shih WJ, Chang HF, Hon MH, Hung IM (2015) Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dihydrate (DCPD). Ceram Int 41:2999–3008

    Article  Google Scholar 

  396. Yoruç ABH, Koca Y (2009) Double step stirring: a novel method for precipitation of nano-sized hydroxyapatite powder. Dig J Nanomater Biostruct 4:73–81

    Google Scholar 

  397. Jarudilokkul S, Tanthapanichakoon W, Boonamnuayvittaya V (2007) Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf A Physicochem Eng Asp 296:149–153

    Article  Google Scholar 

  398. Guo G, Sun Y, Wang Z, Guo H (2005) Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram Int 31:869–872

    Article  Google Scholar 

  399. Lim GK, Wang J, Ng SC, Gan LM (1999) Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions. Langmuir 15:7472–7477

    Article  Google Scholar 

  400. Sun Y, Guo G, Wang Z, Guo H (2006) Synthesis of single-crystal HAP nanorods. Ceram Int 32:951–954

    Article  Google Scholar 

  401. Bose S, Saha SK (2003) Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem Mater 15:4464–4469

    Article  Google Scholar 

  402. Jiang FX, Lu XY, Zhang ML, Weng J (2008) Regulating size, morphology and dispersion of nano-crystallites of hydroxyapatite by pH value and temperature in microemulsion system. Key Eng Mater 361–363:195–198

    Article  Google Scholar 

  403. Li H, Zhu MY, Li LH, Zhou CR (2008) Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. J Mater Sci 43:384–389

    Article  Google Scholar 

  404. Koetz J, Baier J, Kosmella S (2007) Formation of zinc sulfide and hydroxylapatite nanoparticles in polyelectrolyte-modified microemulsions. Colloid Polym Sci 285:1719–1726

    Article  Google Scholar 

  405. Lim HN, Kassim A, Huang NM (2010) Preparation and characterization of calcium phosphate nanorods using reverse microemulsion and hydrothermal processing routes. Sains Malaysiana 39:267–273

    Google Scholar 

  406. Furuzono T, Walsh D, Sato K, Sonoda K, Tanaka J (2001) Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticles in an emulsion system. J Mater Sci Lett 2:111–114

    Article  Google Scholar 

  407. Sadjadi MAS, Akhavan K, Zare K (2011) Preparation of hydroxyapatite nanoparticles by reverse microemulsions and polyelectrolyte-modified microemulsions. Res J Chem Environ 15:959–962

    Google Scholar 

  408. García C, García C, Paucar C (2012) Controlling morphology of hydroxyapatite nanoparticles through hydrothermal microemulsion chemical synthesis. Inorg Chem Commun 20:90–92

    Article  Google Scholar 

  409. Fan T, Sun Y, Ma L (2013) Controllable synthesis of spheroid hydroxyapatite nanoparticles by reverse microemulsion method. Adv Mater Res 602–604:227–230

    Google Scholar 

  410. Amin S, Siddique T, Mujahid M, Shah SS (2015) Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors. J Chem Soc Pak 37:79–85

    Google Scholar 

  411. Shen SC, Chia L, Ng WK, Dong YC, Tan RBH (2010) Solid-phase steam-assisted synthesis of hydroxyapatite nanorods and nanoparticles. J Mater Sci 45:6059–6067

    Article  Google Scholar 

  412. Jevtić M, Mitrić M, Škapin S, Jančar B, Ignjatović N, Uskoković D (2008) Crystal structure of hydroxyapatite nano-rods synthesized by sonochemical homogenous precipitation. Cryst Growth Des 8:2217–2222

    Article  Google Scholar 

  413. Utara S, Klinkaewnarong J (2015) Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent. Ceram Int 41:14860–14867

    Article  Google Scholar 

  414. Cóta LF, Licona KPM, Lunz JN, Ribeiro AA, Morejón L, de Oliveira MV, Pereira LC (2016) Hydroxyapatite nanoparticles: synthesis by sonochemical method and assessment of processing parameters via experimental design. Mater Sci Forum 869:896–901

    Article  Google Scholar 

  415. Wang YJ, Lai C, Wei K, Chen X, Ding Y, Wang ZL (2006) Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology 17:4405–4412

    Article  Google Scholar 

  416. Chen F, Zhu YJ, Wang KW, Zhao KL (2011) Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. Cryst Eng Comm 13:1858–1863

    Article  Google Scholar 

  417. Cao LY, Zhang CB, Huang JF (2005) Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram Int 31:1041–1044

    Article  Google Scholar 

  418. Liu J, Wu Q, Ding Y (2005) Self-assembly and fluorescent modification of hydroxyapatite nanoribbon spherulites. Eur J Inorg Chem 20:4145–4149

    Article  Google Scholar 

  419. Huang J, Jayasinghe SN, Su X, Ahmad Z, Best SM, Edirisinghe MJ, Brooks RA, Rushton N, Bonfield W (2006) Electrostatic atomisation spraying: a novel deposition method for nano-sized hydroxyapatite. Key Eng Mater 309–311:635–638

    Article  Google Scholar 

  420. Okada M, Furuzono T (2012) Hydroxylapatite nanoparticles: fabrication methods and medical applications. Sci Technol Adv Mater 13:064103. (14 pages)

    Article  Google Scholar 

  421. Uota M, Arakawa H, Kitamura N, Yoshimura T, Tanaka J, Kijima T (2005) Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir 21:4724–4728

    Article  Google Scholar 

  422. Chu M, Liu G (2005) Preparation and characterization of hydroxyapatite/liposome core – shell nanocomposites. Nanotechnology 16:1208–1212

    Article  Google Scholar 

  423. Huang F, Shen Y, Xie A, Zhu J, Zhang C, Li S, Zhu J (2007) Study on synthesis and properties of hydroxyapatite nanorods and its complex containing biopolymer. J Mater Sci 42:8599–8605

    Article  Google Scholar 

  424. Wang A, Liu D, Yin H, Wu H, Wada Y, Ren M, Jiang T, Cheng X, Xu Y (2007) Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater Sci Eng C 27:865–869

    Article  Google Scholar 

  425. Ye F, Guo H, Zhang H (2008) Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanotechnology 19:245605. (7 pages)

    Article  Google Scholar 

  426. Han Y, Wang X, Li S (2009) A simple route to prepare stable hydroxyapatite nanoparticles suspension. J Nanopart Res 11:1235–1240

    Article  Google Scholar 

  427. Tseng YH, Kuo CS, Li Y, Huang CP (2009) Polymer-assisted synthesis of hydroxyapatite nanoparticle. Mater Sci Eng C 29:819–822

    Article  Google Scholar 

  428. Klinkaewnarong J, Swatsitang E, Maensiri S (2009) Nanocrystalline hydroxyapatite powders by a chitosan-polymer complex solution route: synthesis and characterization. Solid State Sci 11:1023–1027

    Article  Google Scholar 

  429. Li Y, Li D, Xu Z (2009) Synthesis of hydroxyapatite nanorods assisted by Pluronics. J Mater Sci 44:1258–1263

    Article  Google Scholar 

  430. Nayar S, Sinha MK, Basu D, Sinha A (2006) Synthesis and sintering of biomimetic hydroxyapatite nanoparticles for biomedical applications. J Mater Sci Mater Med 17:1063–1068

    Article  Google Scholar 

  431. Yao X, Yao H, Li G, Li Y (2010) Biomimetic synthesis of needle-like nano-hydroxyapatite templated by double-hydrophilic block copolymer. J Mater Sci 45:1930–1936

    Article  Google Scholar 

  432. Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X (2010) Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R 70:225–242

    Article  Google Scholar 

  433. Mostaghaci B, Fathi MH, Sheikh-Zeinoddin M, Soleimanian-Zad S (2009) Bacterial synthesis of nanostructured hydroxyapatite using Serratia marcescens PTCC 1187. Int J Nanotechnol 6:1015–1030

    Article  Google Scholar 

  434. Nathanael AJ, Hong SI, Mangalaraj D, Chen PC (2011) Large scale synthesis of hydroxyapatite nanospheres by high gravity method. Chem Eng J 173:846–854

    Article  Google Scholar 

  435. Parisi M, Stoller M, Chianese A (2011) Production of nanoparticles of hydroxy apatite by using a rotating disk reactor. Chem Eng Trans 24:211–216

    Google Scholar 

  436. Yuan J, Wu Y, Zheng Q, Xie X (2011) Synthesis and characterization of nano hydroxylapatite by reaction precipitation in impinging streams. Adv Mater Res 160–162:1301–1308

    Google Scholar 

  437. Mohn D, Doebelin N, Tadier S, Bernabei RE, Luechinger NA, Stark WJ, Bohner M (2011) Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J Mater Chem 21:13963–13972

    Article  Google Scholar 

  438. Kandori K, Kuroda T, Togashi S, Katayama E (2011) Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption. J Phys Chem B 115:653–659

    Article  Google Scholar 

  439. He W, Kjellin P, Currie F, Handa P, Knee CS, Bielecki J, Wallenberg LR, Andersson M (2012) Formation of bone-like nanocrystalline apatite using self-assembled liquid crystals. Chem Mater 24:892–902

    Article  Google Scholar 

  440. Chandanshive BB, Rai P, Rossi AL, Ersen O, Khushalani D (2013) Synthesis of hydroxyapatite nanotubes for biomedical applications. Mater Sci Eng C 33:2981–2986

    Article  Google Scholar 

  441. Mousa S, Hanna A (2013) Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste. Mater Res Bull 48:823–828

    Article  Google Scholar 

  442. Wang X, Qian C, Yu X (2014) Synthesis of nano-hydroxyapatite via microbial method and its characterization. Appl Biochem Biotechnol 173:1003–1010

    Article  Google Scholar 

  443. Zhang Y, Wang J, Sharma VK (2014) Designed synthesis of hydroxyapatite nanostructures: bullet-like single crystal and whiskered hollow ellipsoid. J Mater Sci Mater Med 25:1395–1401

    Article  Google Scholar 

  444. Omori Y, Okada M, Takeda S, Matsumoto N (2014) Fabrication of dispersible calcium phosphate nanocrystals via a modified Pechini method under non-stoichiometric conditions. Mater Sci Eng C 42:562–568

    Article  Google Scholar 

  445. He W, Fu Y, Andersson M (2014) Morphological control of calcium phosphate nanostructures using lyotropic liquid crystals. J Mater Chem B 2:3214–3220

    Article  Google Scholar 

  446. Holopainen J, Santala E, Heikkilä M, Ritala M (2015) Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite. Mater Sci Eng C 45:469–476

    Article  Google Scholar 

  447. Okada M, Matsumoto T (2015) Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn Dent Sci Rev 51:85–95

    Article  Google Scholar 

  448. Peng H, Wang J, Lv S, Wen J, Chen JF (2015) Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method. Ceram Int 41:14340–14349

    Article  Google Scholar 

  449. Costa DO, Dixon SJ, Rizkalla AS (2012) One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis. ACS Appl Mater Interfaces 4:1490–1499

    Article  Google Scholar 

  450. He J, Zhang K, Wu S, Cai X, Chen K, Li Y, Sun B, Jia Y, Meng F, Jin Z, Kong L, Liu J (2016) Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J Hazard Mater 303:119–130

    Article  Google Scholar 

  451. Shuk P, Suchanek WL, Hao T, Gulliver E, Riman RE, Senna M, TenHuisen KS, Janas VF (2001) Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature. J Mater Res 16:1231–1234

    Article  Google Scholar 

  452. Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF (2002) Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23:699–710

    Article  Google Scholar 

  453. Abdel-Aal EA, El-Midany AA, El-Shall H (2008) Mechanochemical-hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater Chem Phys 112:202–207

    Article  Google Scholar 

  454. Ji Y, Wang A, Wu G, Yin H, Liu S, Chen B, Liu F, Li X (2015) Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance. Mater Sci Eng C 57:14–23

    Article  Google Scholar 

  455. Yang Q, Wang JX, Guo F, Chen JF (2010) Preparation of hydroxyaptite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Ind Eng Chem Res 49:9857–9863

    Article  Google Scholar 

  456. Song X, Ling F, Li H, Gao Z, Chen X (2012) Tuned morphological electrospun hydroxyapatite nanofibers via pH. J Bionic Eng 9:478–483

    Article  Google Scholar 

  457. Tadic D, Veresov A, Putlayev VI, Epple M (2003) In-vitro preparation of nanocrystalline calcium phosphates as bone substitution materials in surgery. Mater Wiss Werkst 34:1048–1051

    Article  Google Scholar 

  458. Yang Q, Wang JX, Shao L, Wang QA, Guo F, Chen JF, Gu L, An YT (2010) High throughput methodology for continuous preparation of hydroxyapatite nanoparticles in a microporous tube-in-tube microchannel reactor. Ind Eng Chem Res 49:140–147

    Article  Google Scholar 

  459. Liu K, Qin J (2013) Droplet-fused microreactors for room temperature synthesis of nanoscale needle-like hydroxyapatite. Nanotechnology 24:125602. (7 pages)

    Article  Google Scholar 

  460. Fujii E, Kawabata K, Shirosaki Y, Hayakawa S, Osaka A (2015) Fabrication of calcium phosphate nanoparticles in a continuous flow tube reactor. J Ceram Soc Jpn 123:101–105

    Article  Google Scholar 

  461. An GH, Wang HJ, Kim BH, Jeong YG, Choa YH (2007) Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater Sci Eng A 448–451:821–824

    Article  Google Scholar 

  462. Qiu Y, Xia H, Jiang H (2010) Fabrication of nano-hydroxyapatite using a novel ultrasonic atomization precipitation method. J Nanosci Nanotechnol 10:2213–2218

    Article  Google Scholar 

  463. Rouhani P, Taghavinia N, Rouhani S (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason Sonochem 17:853–856

    Article  Google Scholar 

  464. Giardina MA, Fanovich MA (2010) Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation. Ceram Int 36:1961–1969

    Article  Google Scholar 

  465. Girija EK, Kumar GS, Thamizhavel A, Yokogawa Y, Kalkura SN (2012) Role of materialprocessing on the thermalstability and sinterability of nanocrystalline hydroxyapatite. Powder Technol 225:190–195

    Article  Google Scholar 

  466. Gopi D, Indira J, Kavitha L, Sekar M, Mudali UK (2012) Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Spectrochim Acta A 93:131–134

    Article  Google Scholar 

  467. Kojima Y, Kitazawa K, Nishimiya N (2012) Synthesis of nano-sized hydroxyapatite by ultrasound irradiation. J Phys Conf Ser 339:12001. (4 pages)

    Article  Google Scholar 

  468. Zhang YG, Zhu YJ, Chen F, Wu J (2015) Ultralong hydroxyapatite nanowires synthesized by solvothermal treatment using a series of phosphate sodium salts. Mater Lett 144:135–137

    Article  Google Scholar 

  469. Brundavanam S, Poinern GEJ, Fawcett D (2015) Synthesis of a hydroxyapatite nanopowder via ultrasound irradiation from calcium hydroxide powders for potential biomedical applications. Nanosci Nanoeng 3:1–7

    Article  Google Scholar 

  470. Sadjadi MS, Meskinfam M, Sadeghi B, Jazdarreh H, Zare K (2010) In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater Chem Phys 124:217–222

    Article  Google Scholar 

  471. Pandi K, Viswanathan N (2015) In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int J Biol Macromol 74:351–359

    Article  Google Scholar 

  472. Mhin SW, Ryu JH, Kim KM, Park GS, Ryu HW, Shim KB, Sasaki T, Koshizaki N (2009) Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium. Appl Phys A Mater Sci Process 96A:435–440

    Article  Google Scholar 

  473. Musaev OR, Dusevich V, Wieliczka DM, Wrobel JM, Kruger MB (2008) Nanoparticle fabrication of hydroxyapatite by laser ablation in water. J Appl Phys 104:084316. (5 pages)

    Article  Google Scholar 

  474. Boutinguiza M, Lusquiños F, Riveiro A, Comesaña R, Pou J (2009) Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture. Appl Surf Sci 255:5382–5385

    Article  Google Scholar 

  475. Boutinguiza M, Pou J, Lusquiños F, Comesaña R, Riveiro A (2011) Production of calcium phosphate nanoparticles by laser ablation in liquid. Phys Procedia 12:54–59

    Article  Google Scholar 

  476. Boutinguiza M, Comesaña R, Lusquiños F, Riveiro A, Pou J (2011) Production of nanoparticles from natural hydroxylapatite by laser ablation. Nanoscale Res Lett 6:1–5

    Article  Google Scholar 

  477. Zuo Y, Li YB, Wei J, Yan Y (2003) Influence of ethylene glycol on the formation of calcium phosphate nanocrystals. J Mater Sci Technol 19:628–630

    Google Scholar 

  478. Barinov SM, Belonogov EK, Ievlev VM, Kostyuchenko AV, Putlyaev VI, Tret’yakov YD, Smirnov VV, Fadeeva IV (2007) Synthesis of dense nanocrystalline hydroxyapatite films. Dokl Phys Chem 412:15–18

    Article  Google Scholar 

  479. Mello A, Mavropoulos E, Hong Z, Ketterson JB, Rossi AM (2009) Nanometer coatings of hydroxyapatite characterized by glancing-incidence X-ray diffraction. Key Eng Mater 396–398:369–372

    Article  Google Scholar 

  480. Nassif N, Martineau F, Syzgantseva O, Gobeaux F, Willinger M, Coradin T, Cassaignon S, Azaïs T, Giraud-Guille MM (2010) In vivo inspired conditions to synthesize biomimetic hydroxyapatite. Chem Mater 22:3653–3663

    Article  Google Scholar 

  481. Iafisco M, Morales JG, Hernández-Hernández MA, García-Ruiz JM, Roveri N (2010) Biomimetic carbonate-hydroxyapatite nanocrystals prepared by vapor diffusion. Adv Eng Mater 12:B218–B223

    Article  Google Scholar 

  482. Iafisco M, Delgado-López JM, Gómez-Morales J, Hernández-Hernández MA, Rodríguez-Ruiz I, Roveri N (2011) Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets. Cryst Res Technol 46:841–846

    Article  Google Scholar 

  483. Rivera-Muñoz EM, Velázquez-Castillo R, Huirache-Acuña R, Cabrera-Torres JL, Arenas-Alatorre J (2012) Synthesis and characterization of hydroxyapatite-based nanostructures: nanoparticles, nanoplates, nanofibers and nanoribbons. Mater Sci Forum 706–709:589–594

    Article  Google Scholar 

  484. Zhou C, Hong Y, Zhang X (2013) Applications of nanostructured calcium phosphate in tissue engineering. Biomater Sci 1:1012–1028

    Article  Google Scholar 

  485. Zhao H, Zhu YD, Sun J, Wei D, Wang KF, Liu M, Fan HS, Zhang XD (2014) Synthesis of hollow hydroxyapatite nanospheres by the control of nucleation and growth in a two phase system. Chem Commun 50:12519–12522

    Article  Google Scholar 

  486. Lee JH, Kim YJ (2014) Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram Int 40:3361–3369

    Article  Google Scholar 

  487. Hui J, Wang X (2014) Hydroxyapatite nanocrystals: colloidal chemistry, assembly and their biological applications. Inorg Chem Front 1:215–225

    Article  Google Scholar 

  488. Luo P, Nieh TG (1995) Synthesis of ultrafine hydroxyapatite particles by a spray dry method. Mater Sci Eng C 3:75–78

    Article  Google Scholar 

  489. Chen F, Wang ZC, Chang JL (2002) Preparation and characterization of nanosized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57:858–861

    Article  Google Scholar 

  490. Sarig S, Kahana F (2002) Rapid formation of nanocrystalline apatite. J Cryst Growth 237–239:55–59

    Article  Google Scholar 

  491. Bose S, Saha SK (2003) Synthesis of hydroxyapatite nanopowders via sucrose-templated sol-gel method. J Am Ceram Soc 86:1055–1057

    Article  Google Scholar 

  492. Han Y, Li S, Wang X, Chen X (2004) Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method. Mater Res Bull 39:25–32

    Article  Google Scholar 

  493. Liu DM, Yang Q, Troczynski T, Tseng WJ (2002) Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 23:1679–1687

    Article  Google Scholar 

  494. Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 22:1721–1730

    Article  Google Scholar 

  495. Wang F, Li MS, Lu YP, Ge SS (2005) Synthesis of nanocrystalline hydroxyapatite powders in stimulated body fluid. J Mater Sci 40:2073–2076

    Article  Google Scholar 

  496. Wang J, Shaw LL (2009) Synthesis of high purity hydroxyapatite nanopowder via sol-gel combustion process. J Mater Sci Mater Med 20:1223–1227

    Article  Google Scholar 

  497. Varma HK, Kalkura SN, Sivakumar R (1998) Polymeric precursor route for the preparation of calcium phosphate compounds. Ceram Int 24:467–470

    Article  Google Scholar 

  498. Ghosh SK, Roy SK, Kundu B, Datta S, Basu D (2011) Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater Sci Eng B 176:14–21

    Article  Google Scholar 

  499. Loher S, Stark WJ, Maciejewski M, Baiker A, Pratsinis SE, Reichardt D, Maspero F, Krumeich F, Günther D (2005) Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem Mater 17:36–42

    Article  Google Scholar 

  500. Zheo J, Dong X, Bian M, Zhao J, Zhang Y, Sun Y, Chen J, Wang X (2014) Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Appl Surf Sci 314:1026–1033

    Article  Google Scholar 

  501. Wagner DE, Lawrence J, Bhaduri SB (2013) Microwave-assisted solution combustion synthesis of high aspect ratio calcium phosphate nanoparticles. J Mater Res 28:3119–3129

    Article  Google Scholar 

  502. Trommer RM, Santos LA, Bergmann CP (2009) Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater Sci Eng C 29:1770–1775

    Article  Google Scholar 

  503. Chow LC, Sun L, Hockey B (2004) Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol 109:543–551

    Article  Google Scholar 

  504. Li J, Chen YP, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28:781–790

    Article  Google Scholar 

  505. Zhai Y, Cui FZ, Wang Y (2005) Formation of nano hydroxyapatite on recombinant human like collagen fibrils. Curr Appl Phys 5:429–432

    Article  Google Scholar 

  506. Liou SC, Chen SY, Liu DM (2003) Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios. Biomaterials 24:3981–3988

    Article  Google Scholar 

  507. Liou SC, Chen SY, Liu DM (2005) Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J Biomed Mater Res B Appl Biomater 73B:117–122

    Article  Google Scholar 

  508. Amjad Z (1995) Performance of polymeric additives as HA crystal growth inhibitors. Phosphorus Res Bull 5:1–12

    Article  Google Scholar 

  509. Kamitahara M, Kawashita M, Kokubo T, Nakamura T (2001) Effect of polyacrylic acid on the apatite formation of a bioactive ceramic in a simulated body fluid: fundamental examination of the possibility of obtaining bioactive glass-ionomer cements for orthopedic use. Biomaterials 22:3191–3196

    Article  Google Scholar 

  510. Wang X, Li Y, Wei J, de Groot K (2002) Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials 23:4787–4791

    Article  Google Scholar 

  511. Sinha A, Nayar S, Agrawak AC (2003) Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J Am Ceram Soc 86:357–359

    Article  Google Scholar 

  512. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, Xu G, Cui F (2007) The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater 23:1120–1128

    Article  Google Scholar 

  513. Gonzalez-McQuire R, Chane-Ching JY, Vignaud E, Lebugle A, Mann S (2004) Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J Mater Chem 14:2277–2281

    Article  Google Scholar 

  514. Rosseeva EV, Golovanova OA, Frank-Kamenetskaya OV (2007) The influence of amino acids on the formation of nanocrystalline hydroxyapatite. Glas Phys Chem 33:283–286

    Article  Google Scholar 

  515. Zhan J, Tseng YH, Chan JCC, Mou CY (2005) Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Adv Funct Mater 15:2005–2010

    Article  Google Scholar 

  516. Xu AW, Ma Y, Cölfen H (2007) Biomimetic mineralization. J Mater Chem 17:415–449

    Article  Google Scholar 

  517. Pileni M (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 12:145–150

    Article  Google Scholar 

  518. Wu Y, Bose S (2005) Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir 21:3232–3234

    Article  Google Scholar 

  519. Wei K, Lai C, Wang Y (2006) Solvothermal synthesis of calcium phosphate nanowires under different pH conditions. J Macromol Sci A 43A:1531–1540

    Article  Google Scholar 

  520. Lai C, Tang SQ, Wang YJ, Wei K, Zhang SY (2005) Insight into shape control mechanism of calcium phosphate nanopartiles in reverse micelles solution. Synth React Inorg Met Met Org Nano Metal Chem 35:717–725

    Article  Google Scholar 

  521. Banerjee A, Bandyopadhyay A, Bose S (2007) Hydroxyapatite nanopowders: synthesis, densification and cell-materials interaction. Mater Sci Eng C 27:729–735

    Article  Google Scholar 

  522. Han JY, Tan TTY, Loo JSC (2011) Utilizing inverse micelles to synthesize calcium phosphate nanoparticles as nano-carriers. J Nanopart Res 13:3441–3454

    Article  Google Scholar 

  523. Shchukin DG, Sukhorukov GB, Möhwald H (2003) Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell. Chem Mater 15:3947–3950

    Article  Google Scholar 

  524. Mateus AYP, Ferraz MP, Monteiro FJ (2007) Microspheres based on hydroxyapatite nanoparticles aggregates for bone regeneration. Key Eng Mater 330–332:243–246

    Article  Google Scholar 

  525. Nguyen NK, Leoni M, Maniglio D, Migliaresi C (2012) Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests. J Biomater Appl 28:49–61

    Article  Google Scholar 

  526. Mossaad C, Tan MC, Starr M, Payzant EA, Howe JY, Riman RE (2011) Size-dependent crystalline to amorphous uphill phase transformation of hydroxyapatite nanoparticles. Cryst Growth Des 11:45–52

    Article  Google Scholar 

  527. Šupová M (2014) Isolation and preparation of nanoscale bioapatites from natural sources: a review. J Nanosci Nanotechnol 14:546–563

    Article  Google Scholar 

  528. Guo Y, Shi D, Lian J, Dong Z, Wang W, Cho H, Liu G, Wang L, Ewing RC (2008) Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. Nanotechnology 19:175102. (6 pages)

    Article  Google Scholar 

  529. Wang X, Fang Z, Liu J, Zhong X, Ye B (2010) High sensibility of quantum dots to metal ions inspired by hydroxyapatite microbeads. Chin J Chem 28:1005–1012

    Article  Google Scholar 

  530. Liu Q, de Wijn JR, de Groot K, van Blitterswijk CA (1998) Surface modification of nano-apatite by grafting organic polymer. Biomaterials 19:1067–1072

    Article  Google Scholar 

  531. Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, Walsh D, Mann S, Roveri N (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188

    Article  Google Scholar 

  532. Lee HJ, Choi HW, Kim KJ, Lee SC (2006) Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem Mater 18:5111–5118

    Article  Google Scholar 

  533. Lee SC, Choi HW, Lee HJ, Kim KJ, Chang JH, Kim SY, Choi J, Oh KS, Jeong YK (2007) In-situ synthesis of reactive hydroxyapatite nanocrystals for a novel approach of surface grafting polymerization. J Mater Chem 17:174–180

    Article  Google Scholar 

  534. Li L, Liu YK, Tao JH, Zhang M, Pan HH, Xu XR, Tang RK (2008) Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. J Phys Chem C 112:12219–12224

    Article  Google Scholar 

  535. Neumeier M, Hails LA, Davis SA, Mann S, Epple M (2011) Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. J Mater Chem 21:1250–1254

    Article  Google Scholar 

  536. Wang W, Shi D, Lian J, Guo Y, Liu G, Wang L, Ewing RC (2006) Luminescent hydroxylapatite nanoparticles by surface functionalization. Appl Phys Lett 89:183106. (3 pages)

    Article  Google Scholar 

  537. Liu H, Xi P, Xie G, Chen F, Li Z, Bai D, Zeng Z (2011) Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch. J Biol Inorg Chem 16:1135–1140

    Article  Google Scholar 

  538. Saoiabi S, El Asri S, Laghzizil A, Masse S, Ackerman JL (2012) Synthesis and characterization of nanoapatites organofunctionalized with aminotriphosphonate agents. J Solid State Chem 185:95–100

    Article  Google Scholar 

  539. Sharma R, Pandey RR, Gupta AA, Kar S, Dhayal M (2012) In situ amino acid functionalization and microstructure formation of hydroxyapatite nanoparticles synthesized at different pH by precipitation route. Mater Chem Phys 133:718–725

    Article  Google Scholar 

  540. Escudero A, Calvo ME, Rivera-Fernández S, de la Fuente JM, Ocaña M (2013) Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir 29:1985–1994

    Article  Google Scholar 

  541. Parthiban SP, Kim IY, Kikuta K, Ohtsuki C (2013) Formation of serrated nanorods of hydroxyapatite through organic modification under hydrothermal processing. J Nanopart Res 15:1657. (10 pages)

    Article  Google Scholar 

  542. Sharma S, Verma A, Teja BV, Pandey G, Mittapelly N, Trivedi R, Mishra PR (2015) An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions. Colloids Surf B: Biointerfaces 133:120–139

    Article  Google Scholar 

  543. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    Article  Google Scholar 

  544. Bow JS, Liou SC, Chen SY (2004) Structural characterization of room-temperature synthesized nanosized β-tricalcium phosphate. Biomaterials 25:3155–3161

    Article  Google Scholar 

  545. Brunner TJ, Bohner M, Dora C, Gerber C, Stark WJ (2007) Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J Biomed Mater Res B Appl Biomater 83B:400–407

    Article  Google Scholar 

  546. Brunner TJ, Grass RN, Bohner M, Stark WJ (2007) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem 17:4072–4078

    Article  Google Scholar 

  547. Döbelin N, Brunner TJ, Stark WJ, Eggimann M, Fisch M, Bohner M (2009) Phase evolution of thermally treated amorphous tricalcium phosphate nanoparticles. Key Eng Mater 396–398:595–598

    Article  Google Scholar 

  548. Bohner M, Brunner TJ, Döbelin N, Tang R, Stark WJ (2008) Effect of thermal treatments on the reactivity of nanosized tricalcium phosphate powders. J Mater Chem 18:4460–4467

    Article  Google Scholar 

  549. Liu YH, Zhang SM, Liu L, Zhou W, Hu W, Li J, Qiu ZY (2007) Rapid wet synthesis of nano-sized β-TCP by using dialysis. Key Eng Mater 330–332:199–202

    Article  Google Scholar 

  550. Abdel-Fattah WI, Reicha FM, Elkhooly TA (2008) Nano-beta-tricalcium phosphates synthesis and biodegradation: 1. Effect of microwave and SO4 2− ions on β-TCP synthesis and its characterization. Biomed Mater 3:034121. (13 pages)

    Article  Google Scholar 

  551. Vecbiskena L, Gross KA, Riekstina U, Yang TCK (2015) Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response. Biomed Mater 10:025009

    Article  Google Scholar 

  552. Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ (2010) Sol-gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr Appl Phys 10:68–71

    Article  Google Scholar 

  553. Dasgupta S, Bandyopadhyay A, Bose S (2009) Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomater 5:3112–3121

    Article  Google Scholar 

  554. Xia C, Deng X, Lin YH, Nan CW (2010) Preparation and characterisation of nano-sized beta-tricalcium phosphate with a ps template method. Int J Mater Prod Technol 37:257–262

    Article  Google Scholar 

  555. Bucur AI, Bucur R, Vlase T, Doca N (2012) Thermal analysis and high-temperature X-ray diffraction of nano-tricalcium phosphate crystallization. J Therm Anal Calorim 107:249–255

    Article  Google Scholar 

  556. Hoonnivathana E, Pankaew P, Klumdoung P, Limsuwan P, Naemchanthara K (2012) Synthesis of nanocrystalline β-tricalcium phosphate from chicken eggshells by precipitation method. Adv Mater Res 506:86–89

    Article  Google Scholar 

  557. Choi D, Kumta PN (2007) Mechano-chemical synthesis and characterization of nanostructured β-TCP powder. Mater Sci Eng C 27:377–381

    Article  Google Scholar 

  558. Nikcević I, Maravić D, Ignjatović N, Mitrić M, Makoveć D, Uskoković D (2006) The formation and characterization of nanocrystalline phases by mechanical milling of biphasic calcium phosphate/poly-L-lactide biocomposite. Mater Trans 47:2980–2986

    Article  Google Scholar 

  559. Cho JS, Jung DS, Han JM, Kang YC (2009) Nano-sized α and β-TCP powders prepared by high temperature flame spray pyrolysis. Mater Sci Eng C 29:1288–1292

    Article  Google Scholar 

  560. Ataol S, Tezcaner A, Duygulu O, Keskin D, Machin NE (2015) Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells. J Nanopart Res 17:95. (14 pages)

    Article  Google Scholar 

  561. Nasiri-Tabrizi B, Fahami A (2014) Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions. J Ind Eng Chem 20:1236–1242

    Article  Google Scholar 

  562. Boutinguiza M, Pou J, Lusquiños F, Comesaña R, Riveiro A (2011) Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium. Appl Surf Sci 257:5195–5199

    Article  Google Scholar 

  563. Jalota S, Tas AC, Bhaduri SB (2004) Microwave-assisted synthesis of calcium phosphate nanowhiskers. J Mater Res 19:1876–1881

    Article  Google Scholar 

  564. Rameshbabu N, Rao KP (2009) Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Curr Appl Phys 9:S29–S31

    Article  Google Scholar 

  565. Li B, Chen X, Guo B, Wang X, Fan H, Zhang X (2009) Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater 5:134–143

    Article  Google Scholar 

  566. Pasand EG, Nemati A, Solati-Hashjin M, Arzani K, Farzadi A (2012) Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate. Int J Miner Metall Mater 19:441–445

    Article  Google Scholar 

  567. Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A (2009) Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf B: Biointerfaces 73:146–151

    Article  Google Scholar 

  568. Reddy S, Wasnik S, Guha A, Kumar JM, Sinha A, Singh S (2013) Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: in vitro and preliminary in vivo studies. J Biomater Appl 27:565–575

    Article  Google Scholar 

  569. Layrolle P, Lebugle A (1996) Synthesis in pure ethanol and characterization of nanosized calcium phosphate fluoroapatite. Chem Mater 8:134–144

    Article  Google Scholar 

  570. Andres C, Sinani V, Lee D, Gun’ko Y, Kotov N (2006) Anisotropic calcium phosphate nanoparticles coated with 2-carboxyethylphosphonic acid. J Mater Chem 16:3964–3968

    Article  Google Scholar 

  571. Lim H, Kassim A, Huang N, Hashim R, Radiman S, Khiew P, Chiu W (2009) Fabrication and characterization of 1D brushite nanomaterials via sucrose ester reverse microemulsion. Ceram Int 35:2891–2897

    Article  Google Scholar 

  572. Maity JP, Lin TJ, Cheng HP, Chen CY, Reddy AS, Atla SB, Chang YF, Chen HR, Chen CC (2011) Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin. Int J Mol Sci 12:3821–3830

    Article  Google Scholar 

  573. Rodrigues MC, Hewer TLR, de Souza Brito GE, Arana-Chavez VE, Braga RR (2014) Calcium phosphate nanoparticles functionalized with a dimethacrylate monomer. Mater Sci Eng C 45:122–126

    Article  Google Scholar 

  574. Shirkhanzadeh M, Sims S (1997) Immobilization of calcium phosphate nano-clusters into alkoxy-derived porous TiO2 coatings. J Mater Sci Mater Med 8:595–601

    Article  Google Scholar 

  575. Schmidt HT, Ostafin AE (2002) Liposome directed growth of calcium phosphate nanoshells. Adv Mater 14:532–535

    Article  Google Scholar 

  576. Schmidt HT, Gray BL, Wingert PA, Ostafin AE (2004) Assembly of aqueous-cored calcium phosphate nanoparticles for drug delivery. Chem Mater 16:4942–4947

    Article  Google Scholar 

  577. Yeo CH, Zein SHS, Ahmad AL, McPhail DS (2012) Comparison of DOPA and DPPA liposome templates for the synthesis of calcium phosphate nanoshells. Ceram Int 38:561–570

    Article  Google Scholar 

  578. Singh S, Bhardwaj P, Singh V, Aggarwal S, Mandal UK (2008) Synthesis of nanocrystalline calcium phosphate in microemulsion – effect of nature of surfactants. J Colloid Interface Sci 319:322–329

    Article  Google Scholar 

  579. Singh S, Singh V, Aggarwal S, Mandal UK (2010) Synthesis of brushite nanoparticles at different temperatures. Chem Pap 64:491–498

    Article  Google Scholar 

  580. Walsh D, Mann S (1996) Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem Mater 8:1944–1953

    Article  Google Scholar 

  581. Xu HHK, Sun L, Weir MD, Antonucci JM, Takagi S, Chow LC, Peltz M (2006) Nano DCPA – whisker composites with high strength and Ca and PO4 release. J Dent Res 85:722–727

    Article  Google Scholar 

  582. Xu HHK, Weir MD, Sun L, Takagi S, Chow LC (2007) Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J Dent Res 86:378–383

    Article  Google Scholar 

  583. Xu HHK, Weir MD, Sun L (2007) Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater 23:1482–1491

    Article  Google Scholar 

  584. Reardon PJT, Huang J, Tang J (2015) Mesoporous calcium phosphate bionanomaterials with controlled morphology by an energy-efficient microwave method. J Biomed Mater Res A 103A:3781–3789

    Article  Google Scholar 

  585. Djošić MS, Mišković-Stanković VB, Kačarević-Popović ZM, Jokić BM, Bibić N, Mitrić M, Milonjić SK, Jančić-Heinemann R, Stojanović J (2009) Electrochemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium. Colloids Surf A Physicochem Eng Asp 341:110–117

    Article  Google Scholar 

  586. Wei K, Lai C, Wang Y (2007) Formation of monetite nanoparticles and nanofibers in reverse micelles. J Mater Sci 42:5340–5346

    Article  Google Scholar 

  587. Ma Z, Chen F, Zhu YJ, Cui T, Liu XY (2011) Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J Colloid Interface Sci 15:371–379

    Google Scholar 

  588. Urch H, Vallet-Regí M, Ruiz L, Gonzalez-Calbet JM, Epple M (2009) Calcium phosphate nanoparticles with adjustable dispersability and crystallinity. J Mater Chem 19:2166–2171

    Article  Google Scholar 

  589. Holt C, Wahlgren NM, Drakenberg T (1996) Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem J 314:1035–1039

    Article  Google Scholar 

  590. Holt C, Timmins PA, Errington N, Leaver J (1998) A core-shell model of calcium phosphate nanoclusters stabilized by β-casein phosphopeptides, derived from sedimentation equilibrium and small-angle X-ray and neutron-scattering measurements. Eur J Biochem 252:73–78

    Article  Google Scholar 

  591. Duan B, Wang M, Zhou WY, Cheung WL (2008) Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV nanocomposite microspheres for bone tissue engineering applications. Appl Surf Sci 255:529–533

    Article  Google Scholar 

  592. Zhou H, Bhaduri S (2012) Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater 100B:1142–1150

    Article  Google Scholar 

  593. Zhao J, Zhu YJ, Cheng GF, Ruan YJ, Sun TW, Chen F, Wu J, Zhao XY, Ding GJ (2014) Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite microspheres using cytidine 5′-triphosphate disodium salt as a phosphate source. Mater Lett 124:208–211

    Article  Google Scholar 

  594. Ding GJ, Zhu YJ, Qi C, Sun TW, Wu J, Chen F (2015) Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment. RSC Adv 5:40154–40162

    Article  Google Scholar 

  595. Hwang KS, Jeon KO, Jeon YS, Kim BH (2006) Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder. J Mater Sci 41:4159–4162

    Article  Google Scholar 

  596. Hwang KS, Jeon KO, Jeon YS, Kim BH (2007) Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder. J Mater Sci Mater Med 18:619–622

    Article  Google Scholar 

  597. Nasiri-Tabrizi B, Fahami A (2013) Mechanochemical synthesis and structural characterization of nano-sized amorphous tricalcium phosphate. Ceram Int 39:8657–8666

    Article  Google Scholar 

  598. Perkin KK, Turner JL, Wooley KL, Mann S (2005) Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Lett 5:1457–1461

    Article  Google Scholar 

  599. Tjandra W, Ravi P, Yao J, Tam KC (2006) Synthesis of hollow spherical calcium phosphate nanoparticles using polymeric nanotemplates. Nanotechnology 17:5988–5994

    Article  Google Scholar 

  600. Ye F, Guo H, Zhang H, He X (2010) Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater 6:2212–2218

    Article  Google Scholar 

  601. Jiang SD, Yao QZ, Zhou GT, Fu SQ (2012) Fabrication of hydroxyapatite hierarchical hollow microspheres and potential application in water treatment. J Phys Chem C 116:4484–4492

    Article  Google Scholar 

  602. Sadasivan S, Khushalani D, Mann S (2005) Synthesis of calcium phosphate nanofilaments in reverse micelles. Chem Mater 17:2765–2770

    Article  Google Scholar 

  603. Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Butler PJ, Eklund P, Yun JK, Kester M, Adair JH (2008) Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 8:4108–4115

    Article  Google Scholar 

  604. Lai C, Wang YJ, Wei K (2008) Nucleation kinetics of calcium phosphate nanoparticles in reverse micelle solution. Colloids Surf A Physicochem Eng Asp 315:268–274

    Article  Google Scholar 

  605. Yang X, Gao X, Gan Y, Gao C, Zhang X, Ting K, Wu BM, Gou Z (2010) Facile synthesis of octacalcium phosphate nanobelts: growth mechanism and surface adsorption properties. J Phys Chem C 114:6265–6271

    Article  Google Scholar 

  606. Socol G, Torricelli P, Bracci B, Iliescu M, Miroiu F, Bigi A, Werckmann J, Mihailescu IN (2004) Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials 25:2539–2545

    Article  Google Scholar 

  607. Fathi AM, Abd El-Hamid HK, Radwan MM (2016) Preparation and characterization of nano-tetracalcium phosphate coating on titanium substrate. Int J Electrochem Sci 11:3164–3178

    Article  Google Scholar 

  608. de Campos M, Müller FA, Bressiani AHA, Bressiani JC, Greil P (2004) Comparative study of sonochemical synthesized β-TCP- and BCP-nanoparticles. Key Eng Mater 254–256:923–926

    Article  Google Scholar 

  609. Lee BT, Youn MH, Paul RK, Lee KH, Song HY (2007) In situ synthesis of spherical BCP nanopowders by microwave assisted process. Mater Chem Phys 104:249–253

    Article  Google Scholar 

  610. Cho JS, Ko YN, Koo HY, Kang YC (2010) Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J Mater Sci Mater Med 21:1143–1149

    Article  Google Scholar 

  611. Farzadi A, Solati-Hashjin M, Tahmasebi-Birgani Z, Aminian A (2010) Microwave-assisted synthesis and characterization of biphasic calcium phosphate nanopowders. Ceram Trans 218:59–65

    Google Scholar 

  612. Farzadi A, Solati-Hashjin M, Bakhshi F, Aminian A (2011) Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram Int 37:65–71

    Article  Google Scholar 

  613. Pan L, Li Y, Zou C, Weng W, Cheng K, Song C, Du P, Zhao G, Shen G, Wang J, Han G (2007) Surface modification of nanosized biphasic α-TCP/HA powders. Key Eng Mater 330–332:223–226

    Article  Google Scholar 

  614. Urch H, Franzka S, Dahlhaus D, Hartmann N, Hasselbrink E, Epple M (2006) Preparation of two-dimensionally patterned layers of functionalised calcium phosphate nanoparticles by laser direct writing. J Mater Chem 16:1798–1802

    Article  Google Scholar 

  615. Sokolova V, Prymak O, Meyer-Zaika W, Cölfen H, Rehage H, Shukla A, Epple M (2006) Synthesis and characterization of DNA functionalized calcium phosphate nanoparticles. Mater Wiss Werkst 37:441–445

    Article  Google Scholar 

  616. Muddana HS, Morgan TT, Adair JH, Butler PJ (2009) Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett 9:1559–1566

    Article  Google Scholar 

  617. Altinoğlu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084

    Article  Google Scholar 

  618. Schwiertz J, Wiehe A, Gräfe S, Gitter B, Epple M (2009) Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria. Biomaterials 30:3324–3331

    Article  Google Scholar 

  619. Chen F, Zhu YJ, Zhang KH, Wu J, Wang KW, Tang QL, Mo XM (2011) Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res Lett 6:1–9

    Google Scholar 

  620. Haynes MT, Huang L (2014) Lipid-coated calcium phosphate nanoparticles for nonviral gene therapy. Adv Genet 88:205–229

    Google Scholar 

  621. Haedicke K, Kozlova D, Gräfe S, Teichgräber U, Epple M, Hilger I (2015) Multifunctional calcium phosphate nanoparticles for combining near-infrared fluorescence imaging and photodynamic therapy. Acta Biomater 14:197–207

    Article  Google Scholar 

  622. Schwiertz J, Meyer-Zaika W, Ruiz-Gonzalez L, González-Calbet JM, Vallet-Regí M, Epple M (2008) Calcium phosphate nanoparticles as templates for nanocapsules prepared by the layer-by-layer technique. J Mater Chem 18:3831–3834

    Article  Google Scholar 

  623. Cai Y, Liu P, Tang R (2008) Recent patents on nano calcium phosphates. Recent Pat Mater Sci 1:209–216

    Article  Google Scholar 

  624. Hayakawa S, Li Y, Tsuru K, Osaka A, Fujii E, Kawabata K (2009) Preparation of nanometer-scale rod array of hydroxyapatite crystal. Acta Biomater 5:2152–2160

    Article  Google Scholar 

  625. Liao SS, Cui FZ, Zhang W, Feng QL (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 69B:158–165

    Article  Google Scholar 

  626. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007) Nanostructured biocomposite scaffolds based on collagen co-electrospun with nanohydroxyapatite. Biomacromolecules 8:631–637

    Article  Google Scholar 

  627. de Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Article  Google Scholar 

  628. Liao S, Xu G, Wang W, Watari F, Cui F, Ramakrishna S, Chan CK (2007) Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater 3:669–675

    Article  Google Scholar 

  629. Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971

    Article  Google Scholar 

  630. Tao J, Pan H, Zeng Y, Xu X, Tang R (2007) Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem B 111:13410–13418

    Article  Google Scholar 

  631. Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Phil Trans R Soc Lond A 362:2821–2850

    Article  Google Scholar 

  632. Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175

    Article  Google Scholar 

  633. Fu JM, Miao B, Jia LH, Lü KL (2009) Nano-hydroxyapatite for repair of rabbit jaw bone defect: bone mineral density analysis. J Clin Rehabil Tissue Eng Res 13:2387–2390

    Google Scholar 

  634. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  Google Scholar 

  635. Wang L, Li J, Xie Y, Yang P, Liao Y, Guo G (2012) Effect of nano biphasic calcium phosphate bioceramics on periodontal regeneration in the treatment of alveolar defects. Adv Mater Res 486:422–425

    Article  Google Scholar 

  636. Ghanaati S, Barbeck M, Willershausen I, Thimm B, Stuebinger S, Korzinskas T, Obreja K, Landes C, Kirkpatrick CJ, Sader RA (2013) Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. Clin Implant Dent Relat Res 15:883–892

    Article  Google Scholar 

  637. Wang L, Hou H, Zhang J, Sun Z, Yang P, Liao Y (2012) Assessing the effect of nano biphasic calcium phosphate on acute alveolar bone defects in beagle dogs using micro-computed tomography imaging. Adv Mater Res 465:132–135

    Article  Google Scholar 

  638. Wu X, Xu W, Zeng ZL, Hu X, Xi B, Zhou YF, Su JC (2012) Application of nanometer calcium phosphate ceramic artificial bone in percutaneous kyphoplasty; a short-term clinical observation. Acad J Second Mil Med Univ 33:1151–1153

    Google Scholar 

  639. Tavakol S, Nikpour MR, Amani A, Soltani M, Rabiee SM, Rezayat SM, Chen P, Jahanshahi M (2013) Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study. J Nanopart Res 15:1373

    Article  Google Scholar 

  640. Robbins S, Lauryssen C, Songer MN (2016) Use of nanocrystalline hydroxyapatite with autologous BMA and local bone in the lumbar spine: a retrospective CT analysis of posterolateral fusion results. Clin Spine Surg. doi:10.1097/BSD.0000000000000091

  641. Pang KM, Lee JK, Seo YK, Kim SM, Kim MJ, Lee JH (2015) Biologic properties of nano-hydroxyapatite: an in vivo study of calvarial defects, ectopic bone formation and bone implantation. Biomed Mater Eng 25:25–38

    Google Scholar 

  642. Barralet JE, Lilley KJ, Grover LM, Farrar DF, Ansell C, Gbureck U (2004) Cements from nanocrystalline hydroxyapatite. J Mater Sci Mater Med 15:407–411

    Article  Google Scholar 

  643. Lilley KJ, Gbureck U, Wright AJ, Farrar DF, Barralet JE (2005) Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J Mater Sci Mater Med 16:1185–1190

    Article  Google Scholar 

  644. Neira IS, Kolen’ko YV, Lebedev OI, van Tendeloo G, Gupta HS, Matsushita N, Yoshimura M, Guitián F (2009) Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Mater Sci Eng C 29:2124–2132

    Article  Google Scholar 

  645. Dorozhkin SV (2013) Self-setting calcium orthophosphate formulations. J Funct Biomater 4:209–311

    Article  Google Scholar 

  646. Leitune VCB, Collares FM, Trommer RM, Andrioli DG, Bergmann CP, Samuel SMW (2013) The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent 41:321–327

    Article  Google Scholar 

  647. Fricain JC, Schlaubitz S, le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M, Fabre T, Cornet S, Durand M, Léonard A, Sahraoui N, Letourneur D, Amédée J (2013) A nano-hydroxyapatite – pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34:2947–2959

    Article  Google Scholar 

  648. Venkatesan J, Kim SK (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review. J Biomed Nanotechnol 10:3124–3140

    Article  Google Scholar 

  649. Jayasree R, Kumar TSS (2015) Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. J Compos Mater 49:2921–2933

    Article  Google Scholar 

  650. Munarin F, Petrini P, Gentilini R, Pillai RS, Dirè S, Tanzi MC, Sglavo VM (2015) Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites. Int J Biol Macromol 72:199–209

    Article  Google Scholar 

  651. Kang X, Zhang W, Yang C (2016) Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites. J Appl Polym Sci 133:42869

    Article  Google Scholar 

  652. Strnadova M, Protivinsky J, Strnad J, Vejsicka Z (2008) Preparation of porous synthetic nanostructured HA scaffold. Key Eng Mater 361–363:211–214

    Article  Google Scholar 

  653. Kim JY, Lee JW, Lee SJ, Park EK, Kim SY, Cho DW (2007) Development of a bone scaffold using HA nanopowder and micro-stereolithography technology. Microelectron Eng 84:1762–1765

    Article  Google Scholar 

  654. Naga SM, El-Maghraby HF, Sayed M, Saad EA (2015) Highly porous scaffolds made of nanosized hydroxyapatite powder synthesized from eggshells. J Ceram Sci Technol 6:237–243

    Google Scholar 

  655. Roh HS, Myung SW, Jung SC, Kim BH (2015) Fabrication of 3D scaffolds with nano-hydroxyapatite for improving the preosteoblast cell-biological performance. J Nanosci Nanotechnol 15:5585–5588

    Article  Google Scholar 

  656. Rodrigues LR, d’Ávila MA, Monteiro FJM, de Zavaglia CAC (2012) Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation. Mater Res 15:974–980

    Article  Google Scholar 

  657. Krylova IV, Ivanov LN, Bozhevol’nov VE, Severin AV (2007) Self-organization processes and phase transitions in nanocrystalline hydroxyapatite according to exoemission data. Russ J Phys Chem A 81:241–245

    Article  Google Scholar 

  658. Veljovic D, Jokic B, Jankovic-Castvan I, Smiciklas I, Petrovic R, Janackovic D (2007) Sintering behaviour of nanosized HAP powder. Key Eng Mater 330–332:259–262

    Article  Google Scholar 

  659. Uehira M, Okada M, Takeda S, Matsumoto N (2013) Preparation and characterization of low-crystallized hydroxyapatite nanoporous plates and granules. Appl Surf Sci 287:195–202

    Article  Google Scholar 

  660. Zhang F, Lin K, Chang J, Lu J, Ning C (2008) Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders. J Eur Ceram Soc 28:539–545

    Article  Google Scholar 

  661. Grossin D, Banu M, Sarda S, Martinet-Rollin S, Drouet C, Estournès C, Champion E, Rossignol F, Combes C, Rey C (2010) Low temperature consolidation of nanocrystalline apatites toward a new generation of calcium phosphate ceramics. Ceram Eng Sci Proc 30:113–126

    Google Scholar 

  662. Chaudhry AA, Yan H, Gong K, Inam F, Viola G, Reece MJ, Goodall JBM, ur Rehman I, McNeil-Watson FK, Corbett JCW, Knowles JC, Darr JA (2011) High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater 7:791–799

    Article  Google Scholar 

  663. Eriksson M, Liu Y, Hu J, Gao L, Nygren M, Shen Z (2011) Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J Eur Ceram Soc 31:1533–1540

    Article  Google Scholar 

  664. Kutty MG, Loertscher J, Bhaduri S, Bhaduri SB, Tinga WR (2001) Microwave sintering of nanocrystalline hydroxyapatite. Ceram Eng Sci Proc 22:3–10

    Article  Google Scholar 

  665. Vijayan S, Varma H (2002) Microwave sintering of nanosized hydroxyapatite powder compacts. Mater Lett 56:827–831

    Article  Google Scholar 

  666. Ramesh S, Tan CY, Bhaduri SB, Teng WD (2007) Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram Int 33:1363–1367

    Article  Google Scholar 

  667. Lin K, Chen L, Chang J (2012) Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int J Appl Ceram Technol 9:479–485

    Article  Google Scholar 

  668. Feng P, Niu M, Gao C, Peng S, Shuai C (2014) A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep 4:5599. (10 pages)

    Article  Google Scholar 

  669. Okada M, Furuzono T (2006) Fabrication of high-dispersibility nanocrystals of calcined hydroxyapatite. J Mater Sci 41:6134–6137

    Article  Google Scholar 

  670. Okada M, Furuzono T (2007) Nanosized ceramic particles of hydroxyapatite calcined with an anti-sintering agent. J Nanosci Nanotechnol 7:848–851

    Article  Google Scholar 

  671. Okada M, Furuzono T (2007) Calcination of rod-like hydroxyapatite nanocrystals with an anti-sintering agent surrounding the crystals. J Nanopart Res 9:807–815

    Article  Google Scholar 

  672. Müller-Mai CM, Stupp SI, Voigt C, Gross U (1995) Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. J Biomed Mater Res 29:9–18

    Article  Google Scholar 

  673. Du C, Cui FZ, Feng QL, Zhu XD, de Groot K (1998) Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res 42:540–548

    Article  Google Scholar 

  674. Du C, Cui FZ, Zhu XD, de Groot K (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 44:407–415

    Article  Google Scholar 

  675. Paul W, Sharma CP (2006) Nanoceramic matrices: biomedical applications. Am J Biochem Biotechnol 2:41–48

    Article  Google Scholar 

  676. Huber FX, McArthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, Berger I, Meeder PJ (2006) Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg 126:533–540

    Article  Google Scholar 

  677. Smeets R, Jelitte G, Heiland M, Kasaj A, Grosjean M, Riediger D, Yildirim M, Spiekermann H, Maciejewski O (2008) Hydroxylapatit-Knochenersatzmaterial (Ostim®) bei der Sinusbodenelevation. Schweiz Monatsschr Zahnmed 118:203–208

    Google Scholar 

  678. Gerlach KL, Niehues D (2007) Die Behandlung der Kieferzysten mit einem neuartigen nanopartikulären Hydroxylapatit. Mund Kiefer Gesichtschir 11:131–137

    Article  Google Scholar 

  679. Schwarz F, Bieling K, Latz T, Nuesry E, Becker J (2006) Healing of intrabony periimplantitis defects following application of a nanocristalline hydroxyapatite (Ostim™) or a bovine-derived xenograft (Bio-Oss™) in combination with a collagen membrane (Bio-Gide™). A case series. J Clin Periodontol 33:491–499

    Article  Google Scholar 

  680. Strietzel FP, Reichart PA, Graf HL (2007) Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim®). Preliminary clinical and histological results. Clin Oral Implants Res 18:743–751

    Article  Google Scholar 

  681. Spies C, Schnürer S, Gotterbarm T, Breusch S (2008) Tierexperimentelle Untersuchung des Knochenersatzstoffs Ostim™ im knöchernen Lager des Göttinger Miniaturschweins. Z Orthop Unfall 146:64–69

    Article  Google Scholar 

  682. Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA (2005) Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63:1626–1633

    Article  Google Scholar 

  683. Brandt J, Henning S, Michler G, Schulz M, Bernstein A (2008) Nanocrystalline hydroxyapatite for bone repair. Key Eng Mater 361–363:35–38

    Article  Google Scholar 

  684. Huber FX, Hillmeier J, Herzog L, McArthur N, Kock HJ, Meeder PJ (2006) Open reduction and palmar plate-osteosynthesis in combination with a nanocrystalline hydroxyapatite spacer in the treatment of comminuted fractures of the distal radius. J Hand Surg (Br) 31B:298–303

    Article  Google Scholar 

  685. Huber FX, Hillmeier J, McArthur N, Kock HJ, Meeder PJ (2006) The use of nanocrystalline hydroxyapatite for the reconstruction of calcaneal fractures: preliminary results. J Foot Ankle Surg 45:322–328

    Article  Google Scholar 

  686. Laschke MW, Witt K, Pohlemann T, Menger MD (2007) Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J Biomed Mater Res B Appl Biomater 82B:494–505

    Article  Google Scholar 

  687. Spies CKG, Schnürer S, Gotterbarm T, Breusch S (2009) The efficacy of Biobon™ and Ostim™ within metaphyseal defects using the Göttinger Minipig. Arch Orthop Trauma Surg 129:979–988

    Article  Google Scholar 

  688. Chitsazi MT, Shirmohammadi A, Faramarzie M, Pourabbas R, Rostamzadeh AN (2011) A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal 16:448–453

    Article  Google Scholar 

  689. Canuto RA, Pol R, Martinasso G, Muzio G, Gallesio G, Mozzati M (2012) Hydroxyapatite paste Ostim®, without elevation of full-thickness flaps, improves alveolar healing stimulating BMP- and VEGF-mediated signal pathways: an experimental study in humans. Clin Oral Implants Res Suppl A 100:42–48

    Google Scholar 

  690. Huber FX, Belyaev O, Hillmeier J, Kock HJ, Huber C, Meeder PJ, Berger I (2006) First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskelet Disord 7:50. (14 pages)

    Article  Google Scholar 

  691. Huber FX, Berger I, McArthur N, Huber C, Kock HP, Hillmeier J, Meeder PJ (2008) Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits. J Mater Sci Mater Med 19:33–38

    Article  Google Scholar 

  692. Arts JJC, Verdonschot N, Schreurs BW, Buma P (2006) The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 27:1110–1118

    Article  Google Scholar 

  693. Varma NP, Garai S, Sinha A (2012) Synthesis of injectable and cohesive nano hydroxyapatite scaffolds. J Mater Sci Mater Med 23:913–919

    Article  Google Scholar 

  694. Zhang W, Liao SS, Cui FZ (2003) Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 15:3221–3226

    Article  Google Scholar 

  695. Li X, Huang J, Edirisinghe MJ (2008) Development of nano-hydroxyapatite coating by electrohydrodynamic atomization spraying. J Mater Sci Mater Med 19:1545–1551

    Article  Google Scholar 

  696. Hahn BD, Park DS, Choi JJ, Ryu J, Yoon WH, Kim KH, Park C, Kim HE (2009) Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J Am Ceram Soc 92:683–687

    Article  Google Scholar 

  697. Narayanan R, Kwon TY, Kim KH (2008) Direct nanocrystalline hydroxyapatite formation on titanium from ultrasonated electrochemical bath at physiological pH. Mater Sci Eng C 28:1265–1270

    Article  Google Scholar 

  698. Yousefpour M, Afshar A, Yang X, Li X, Yang B, Wu Y, Chen J, Zhang X (2006) Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium. J Electroanal Chem 589:96–105

    Article  Google Scholar 

  699. Mendes VC, Moineddin R, Davies JE (2009) Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. J Biomed Mater Res A 90A:577–585

    Article  Google Scholar 

  700. Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, Stenport V (2013) Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res A 101A:465–471

    Article  Google Scholar 

  701. Iskandar ME, Aslani A, Tian Q, Liu H (2015) Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells. J Mater Sci Mater Med 26:189. (18 pages)

    Article  Google Scholar 

  702. Feng G, Cheng X, Xie D, Wang K, Zhang B (2016) Fabrication and characterization of nano prism-like hydroxyapatite coating on porous titanium substrate by combined biomimetic-hydrothermal method. Mater Lett 163:134–137

    Article  Google Scholar 

  703. Bral A, Mommaerts MY (2016) In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review. J Craniomaxillofac Surg 44:400–412

    Article  Google Scholar 

  704. Dorozhkin SV (2015) Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C 55:272–326

    Article  Google Scholar 

  705. Nies B, Rößler S, Reinstorf A (2007) Formation of nano hydroxyapatite – a straightforward way to bioactivate bone implant surfaces. Int J Mater Res (Formerly Z Metallkd) 98:630–636

    Article  Google Scholar 

  706. Jalota S, Bhaduri SB, Tas AC (2006) Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. J Mater Sci Mater Med 17:697–707

    Article  Google Scholar 

  707. Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KDK, Lu WW (2007) Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 82B:183–191

    Article  Google Scholar 

  708. Thian ES, Ahmad Z, Huang J, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Bonfield W, Best SM (2008) The role of electrosprayed nanoapatites in guiding osteoblast behaviour. Biomaterials 29:1833–1843

    Article  Google Scholar 

  709. Bigi A, Nicoli-Aldini N, Bracci B, Zavan B, Boanini E, Sbaiz F, Panzavolta S, Zorzato G, Giardino R, Facchini A, Abatangelo G, Cortivo R (2007) In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite coated Ti13Nb13Zr alloy. J Biomed Mater Res A 82A:213–221

    Article  Google Scholar 

  710. Bigi A, Fini M, Bracci B, Boanini E, Torricelli P, Giavaresi G, Aldini NN, Facchini A, Sbaiz F, Giardino R (2008) The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 29:1730–1736

    Article  Google Scholar 

  711. Thian ES, Huang J, Ahmad Z, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Best SM, Bonfield W (2008) Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response. J Biomed Mater Res A 85A:188–194

    Article  Google Scholar 

  712. Furuzono T, Masuda M, Okada M, Yasuda S, Kadono H, Tanaka R, Miyatake K (2006) Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel. ASAIO J 52:315–320

    Article  Google Scholar 

  713. Yanagida H, Okada M, Masuda M, Ueki M, Narama I, Kitao S, Koyama Y, Furuzono T, Takakuda K (2009) Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly(L-lactic acid) fabric. J Biosci Bioeng 108:235–243

    Article  Google Scholar 

  714. Moon JW, Sohn DS, Heo JU (2015) Histomorphometric analysis of maxillary sinus augmentation with calcium phosphate nanocrystal-coated xenograft. Implant Dent 24:333–337

    Google Scholar 

  715. Hu J, Yang Z, Zhou Y, Liu Y, Li K, Lu H (2015) Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J Mater Sci Mater Med 26:257. (12 pages)

    Article  Google Scholar 

  716. Li X, Huang J, Edirisinghe MJ (2008) Development of template-assisted electrohydrodynamic atomization spraying for nanoHA patterning. Key Eng Mater 361–363:585–588

    Google Scholar 

  717. Abrahamsson I, Linder E, Larsson L, Berglundh T (2013) Deposition of nanometer scaled calcium-phosphate crystals to implants with a dual acid-etched surface does not improve early tissue integration. Clin Oral Implants Res 24:57–62

    Article  Google Scholar 

  718. Alghamdi HS, van Oirschot BAJA, Bosco R, van den Beucken JJ, Aldosari AAF, Anil S, Jansen JA (2013) Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res 24:475–483

    Article  Google Scholar 

  719. Kasaj A, Willershausen B, Reichert C, Rohrig B, Smeets R, Schmidt M (2008) Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell proliferation. J Oral Sci 50:279–285

    Article  Google Scholar 

  720. Shi ZL, Huang X, Cai YR, Tang RK, Yang DS (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

    Article  Google Scholar 

  721. Liu Y, Wang G, Cai Y, Ji H, Zhou G, Zhao X, Tang R, Zhang M (2009) In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res A 15A:1083–1091

    Article  Google Scholar 

  722. Zhu X, Eibl O, Scheideler L, Geis-Gerstorfer J (2006) Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors. J Biomed Mater Res A 79A:114–127

    Article  Google Scholar 

  723. Zhu W, Zhang X, Wang D, Lu W, Ou Y, Han Y, Zhou K, Liu H, Fen W, Peng L, He C, Zeng Y (2010) Experimental study on the conduction function of nano-hydroxyapatite artificial bone. Micro Nano Lett 5:19–27

    Article  Google Scholar 

  724. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28:3338–3348

    Article  Google Scholar 

  725. Zhang YF, Cheng XR, Chen Y, Shi B, Chen XH, Xu DX, Ke J (2007) Three-dimensional nanohydroxyapatite / chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349

    Article  Google Scholar 

  726. Huang YX, Ren J, Chen C, Ren TB, Zhou XY (2008) Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit mscs culture on scaffolds. J Biomater Appl 22:409–432

    Article  Google Scholar 

  727. Thian ES, Ahmad Z, Huang J, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Bonfield W, Best SM (2007) Bioactivity of nanoapatite produced by electrohydrodynamic atomization. J Bionanosci 1:60–63

    Article  Google Scholar 

  728. Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, Ziche M (2006) The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res A 76A:656–663

    Article  Google Scholar 

  729. Pezzatini S, Morbidelli L, Solito R, Paccagnini E, Boanini E, Bigi A, Ziche M (2007) Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone 41:523–534

    Article  Google Scholar 

  730. Macmillan AK, Lamberti FV, Moulton JN, Geilich BM, Webster TJ (2014) Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone. Int J Nanomedicine 9:5627–5637

    Google Scholar 

  731. Pilloni A, Pompa G, Saccucci M, di Carlo G, Rimondini L, Brama M, Zeza B, Wannenes F, Migliaccio S (2014) Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study. BMC Oral Health 14:22. (7 pages)

    Article  Google Scholar 

  732. Ha SW, Jang HL, Nam KT, Beck GR (2015) Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 65:32–42

    Article  Google Scholar 

  733. Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shi Z, Tang R (2007) Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem 17:3780–3787

    Article  Google Scholar 

  734. Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H, Xu X, Tang R (2007) Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J Mater Chem 17:4690–4698

    Article  Google Scholar 

  735. Liu X, Zhao M, Lu J, Ma J, Wei J, Wei S (2012) Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int J Nanomedicine 7:1239–1250

    Article  Google Scholar 

  736. d’Elía NL, Mathieu C, Hoemann CD, Laiuppa JA, Santillán GE, Messina PV (2015) Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures. Nanoscale 7:18751–18762

    Article  Google Scholar 

  737. Kim K, Dean D, Lu A, Mikos AG, Fisher JP (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7:1249–1264

    Article  Google Scholar 

  738. Svanborg LM, Hoffman M, Andersson M, Currie F, Kjellin P, Wennerberg A (2011) The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants. Int J Oral Maxillofac Surg 40:308–315

    Article  Google Scholar 

  739. Suto M, Nemoto E, Kanaya S, Suzuki R, Tsuchiya M, Shimauchi H (2013) Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol 58:1021–1028

    Article  Google Scholar 

  740. Detsch R, Hagmeyer D, Neumann M, Schaefer S, Vortkamp A, Wuelling M, Ziegler G, Epple M (2010) The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta Biomater 6:3223–3233

    Article  Google Scholar 

  741. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138

    Article  Google Scholar 

  742. Martínez E, Engel E, Planell JA, Samitier J (2009) Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat 191:126–135

    Article  Google Scholar 

  743. Lee DH, Han JS, Yang JH, Lee JB (2009) MC3T3-E1 cell response to pure titanium, zirconia and nano-hydroxyapatite. Int J Mod Phys B 23:1535–1540

    Article  Google Scholar 

  744. Liu M, Zhou G, Song W, Li P, Liu H, Niu X, Fan Y (2012) Effect of nano-hydroxyapatite on the axonal guidance growth of rat cortical neurons. Nanoscale 4:3201–3207

    Article  Google Scholar 

  745. Onuma K, Yamagishi K, Oyane A (2005) Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J Cryst Growth 282:199–207

    Article  Google Scholar 

  746. Huang S, Gao S, Cheng L, Yu H (2011) Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res 45:460–468

    Article  Google Scholar 

  747. Roveri N, Battistella E, Bianchi CL, Foltran I, Foresti E, Iafisco M, Lelli M, Naldoni A, Palazzo B, Rimondini L (2009) Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater 2009:746383. (9 pages)

    Article  Google Scholar 

  748. Dorozhkin SV (2016) Calcium orthophosphates (CaPO4) and dentistry. Bioceram Dev Appl 6:96

    Article  Google Scholar 

  749. Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI (2006) Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater 309–311:537–540

    Article  Google Scholar 

  750. Tschoppe P, Zandim DL, Martus P, Kielbassa AM (2011) Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent 39:430–437

    Article  Google Scholar 

  751. Wang CJ, Zhang YF, Wei J, Wei SC (2011) Repair of artificial enamel lesions by nano fluorapatite paste containing fluorin. J Clin Rehabil Tiss Eng Res 15:6346–6350

    Google Scholar 

  752. Kovtun A, Kozlova D, Ganesan K, Biewald C, Seipold N, Gaengler P, Arnold WH, Epple M (2012) Chlorhexidine-loaded calcium phosphate nanoparticles for dental maintenance treatment: combination of mineralising and antibacterial effects. RSC Adv 2:870–875

    Article  Google Scholar 

  753. Kim BI, Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD (2006) Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng Mater 309–311:541–544

    Google Scholar 

  754. Collares FM, Leitune VCB, Rostirolla FV, Trommer RM, Bergmann CP, Samuel SMW (2012) Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int Endod J 45:63–67

    Article  Google Scholar 

  755. Kim MY, Kwon HK, Choi CH, Kim BI (2007) Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Eng Mater 330-332:1347–1350

    Article  Google Scholar 

  756. Lee HJ, Min JH, Choi CH, Kwon HG, Kim BI (2007) Remineralization potential of sports drink containing nano-sized hydroxyapatite. Key Eng Mater 330–332:275–278

    Article  Google Scholar 

  757. Min JH, Kwon HK, Kim BI (2011) The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion – in vitro study using bovine enamel. J Dent 39:629–635

    Article  Google Scholar 

  758. Hong YW, Kim JH, Lee BH, Lee YK, Choi BJ, Lee JH, Choi HJ (2008) The effect of nano-sized β-tricalcium phosphate on remineralization in glass ionomer dental luting cement. Key Eng Mater 361–363:861–864

    Article  Google Scholar 

  759. Weir MD, Chow LC, Xu HHK (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res 91:979–984

    Article  Google Scholar 

  760. Melo MAS, Cheng L, Weir MD, Hsia RC, Rodrigues LKA, Xu HHK (2013) Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 101:620–629

    Article  Google Scholar 

  761. Melo MAS, Weir MD, Rodrigues LKA, Xu HHK (2013) Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater 29:231–240

    Article  Google Scholar 

  762. Li L, Pan HH, Tao JH, Xu XR, Mao CY, Gu XH, Tang RK (2008) Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem 18:4079–4084

    Article  Google Scholar 

  763. Meng X, Lv K, Zhang J, Qu D (2007) Caries inhibitory activity of the nano-HA in vitro. Key Eng Mater 330–332:251–254

    Article  Google Scholar 

  764. Li BG, Wang JP, Zhao ZY, Sui YF, Zhang YX (2007) Mineralizing of nano-hydroxyapatite powders on artificial caries. Rare Metal Mater Eng 36:128–130

    Google Scholar 

  765. Choi AH, Ben-Nissan B, Matinlinna JP, Conway RC (2013) Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res 92:853–859

    Article  Google Scholar 

  766. Ashokan A, Menon D, Nair S, Koyakutty M (2010) A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials 31:2606–2616

    Article  Google Scholar 

  767. Bauer IW, Li SP, Han YC, Yuan L, Yin MZ (2008) Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater Med 19:1091–1095

    Article  Google Scholar 

  768. Czupryna J, Tsourkas A (2006) Suicide gene delivery by calcium phosphate nanoparticles. A novel method of targeted therapy for gastric cancer. Cancer Biol Ther 5:1691–1692

    Article  Google Scholar 

  769. Pareta RA (2009) Calcium phosphate nanoparticles: toxicology and lymph node targeting for cancer metastasis prevention. In: Webster TJ (ed) Safety of nanoparticles. From manufacturing to medical applications. Springer, New York

    Google Scholar 

  770. Zhang G, Liu T, Chen YH, Chen Y, Xu M, Peng J, Yu S, Yuan J, Zhang X (2009) Tissue specific cytotoxicity of colon cancer cells mediated by nanoparticle-delivered suicide gene in vitro and in vivo. Clin Cancer Res 15:201–207

    Article  Google Scholar 

  771. Luo Y, Ling Y, Guo W, Pang J, Liu W, Fang Y, Wen X, Wei K, Gao X (2010) Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxelinduced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells. J Control Release 147:278–288

    Article  Google Scholar 

  772. Shi Z, Huang X, Liu B, Tao H, Cai Y, Tang R (2010) Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J Biomater Appl 25:19–37

    Article  Google Scholar 

  773. Iafisco M, Palazzo B, Martra G, Margiotta N, Piccinonna S, Natile G, Gandin V, Marzano C, Roveri N (2012) Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates. Nanoscale 4:206–217

    Article  Google Scholar 

  774. Chu SH, Feng DF, Ma YB, Li ZQ (2012) Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int J Nanomedicine 7:3659–3666

    Article  Google Scholar 

  775. Iafisco M, Delgado-Lopez JM, Varoni EM, Tampieri A, Rimondini L, Gomez-Morales J, Prat M (2013) Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 9:3834–3844

    Article  Google Scholar 

  776. Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, Qiu T, Dai H, Wang X (2014) Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep 4:7134. (7 pages)

    Article  Google Scholar 

  777. Yin M, Yin Y, Chen H, Han Y, Dai H, Li S (2015) Effect of hydroxyapatite nanoparticles on the growth potential of hepatoma cells in nude mice. J Nanosci Nanotechnol 15:3816–3822

    Article  Google Scholar 

  778. Xiong H, Du S, Ni J, Zhou J, Yao J (2016) Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94:70–83

    Article  Google Scholar 

  779. Li B, Guo B, Fan H, Zhang X (2008) Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl Surf Sci 255:357–360

    Article  Google Scholar 

  780. Dai H, Pei C, Han Y, Xinyu W, Li S (2011) Inhibitory effect of hydroxyapatite nanoparticles on K562 cells. Mater Sci Forum 685:352–356

    Article  Google Scholar 

  781. Borum L, Wilson OC (2003) Surface modification of hydroxyapatite. Part II Silic Biomater 24:3681–3688

    Google Scholar 

  782. Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC (2007) The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur Polym J 43:1602–1608

    Article  Google Scholar 

  783. Wilson OC, Hull JR (2008) Surface modification of nanophase hydroxyapatite with chitosan. Mater Sci Eng C 28:434–437

    Article  Google Scholar 

  784. Liao JG, Wang XJ, Zuo Y, Zhang L, Wen JQ, Li YB (2008) Surface modification of nano-hydroxyapatite with silane agent. J Inorg Mater 23:145–149

    Article  Google Scholar 

  785. Wang Y, Xiao Y, Huang X, Lang M (2011) Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. J Colloid Interface Sci 15:415–421

    Article  Google Scholar 

  786. Deng C, Xiao X, Yao N, Yang XB, Weng J (2011) Effect of surface modification of nano-hydroxyapatite particles on in vitro biocompatibility of poly (ε-caprolactone)-matrix composite biomaterials. Int J Polym Mater 60:969–978

    Article  Google Scholar 

  787. Jensen T, Baas J, Dolathshahi-Pirouz A, Jacobsen T, Singh G, Nygaard JV, Foss M, Bechtold J, Bünger C, Besenbacher F, Søballe K (2011) Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. J Biomed Mater Res A 99A:94–101

    Article  Google Scholar 

  788. Chen L, Mccrate JM, Lee JCM, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708. (10 pages)

    Article  Google Scholar 

  789. Dai Y, Xu M, Wei J, Zhang H, Chen Y (2012) Surface modification of hydroxyapatite nanoparticles by poly(l-phenylalanine) via ROP of l-phenylalanine N-carboxyanhydride (Pha-NCA). Appl Surf Sci 258:2850–2855

    Article  Google Scholar 

  790. Feng G, Cheng X, Xie D, Wang K, Zhang B (2016) Synthesis of nano-hydroxyapatite and its rapid mediated surface functionalization by silane coupling agent. Mater Sci Eng C 58:675–681

    Article  Google Scholar 

  791. Ramachandran R, Paul W, Sharma CP (2009) Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J Biomed Mater Res B Appl Biomater 88B:41–48

    Article  Google Scholar 

  792. Uskoković V, Uskoković DP (2010) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater 96B:152–191

    Article  Google Scholar 

  793. Loo SC, Moore T, Banik B, Alexis F (2010) Biomedical applications of hydroxyapatite nanoparticles. Curr Pharm Biotechnol 11:333–342

    Article  Google Scholar 

  794. Dong X, Shao C (2013) The dynamic behaviors and structure conservation of protein BMP-2 on hydroxyapatite nano surfaces. Adv Mater Res 601:115–119

    Article  Google Scholar 

  795. Fu H, Hu Y, McNelis T, Hollinger JO (2005) A calcium phosphate-based gene delivery system. J Biomed Mater Res A 74A:40–48

    Article  Google Scholar 

  796. Liu TY, Chen SY, Liu DM, Liou SC (2005) On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Control Release 107:112–121

    Article  Google Scholar 

  797. Cheng XG, Kuhn LT (2007) Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomedicine 2:667–674

    Google Scholar 

  798. Maitra A (2005) Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 5:893–905

    Article  Google Scholar 

  799. Yang XC, Walboomers XF, van den Dolder J, Yang F, Bian Z, Fan MW, Jansen JA (2008) Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng A 14:71–81

    Article  Google Scholar 

  800. Ong HT, Loo JSC, Boey FYC, Russell SJ, Ma J, Peng KW (2008) Exploiting the high-affinity phosphonate – hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J Nanopart Res 10:141–150

    Article  Google Scholar 

  801. Altinoğlu EI, Adair JH (2009) Calcium phosphate nanocomposite particles: a safer and more effective alternative to conventional chemotherapy? Future Oncol 5:279–281

    Article  Google Scholar 

  802. Joyappa DH, Kumar CA, Banumathi N, Reddy GR, Suryanarayana VVS (2009) Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet Microbiol 139:58–66

    Article  Google Scholar 

  803. Dreesen IAJ, Lüchinger NA, Stark WJ, Fussenegger M (2009) Tricalcium phosphate nanoparticles enable rapid purification, increase transduction kinetics, and modify the tropism of mammalian viruses. Biotechnol Bioeng 102:1197–1208

    Article  Google Scholar 

  804. Tang QL, Zhu YJ, Wu J, Chen F, Cao SW (2011) Calcium phosphate drug nanocarriers with ultrahigh and adjustable drug-loading capacity: one-step synthesis, in situ drug loading and prolonged drug release. Nanomedicine 7:428–434

    Article  Google Scholar 

  805. Pittella F, Zhang M, Lee Y, Kim HJ, Tockary T, Osada K, Ishii T, Miyata K, Nishiyama N, Kataoka K (2011) Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials 32:3106–3114

    Article  Google Scholar 

  806. Behera T, Swain P (2011) Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell Immunol 271:350–359

    Article  Google Scholar 

  807. Jiang JL, Li YF, Fang TL, Zhou J, Li XL, Wang YC, Dong J (2012) Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res 61:207–215

    Article  Google Scholar 

  808. Varoni EM, Iafisco M, Rimondini L, Prat M (2012) Development of a targeted drug delivery system: monoclonal antibodies adsorption onto bonelike hydroxyapatite nanocrystal surface. Adv Mater Res 409:175–180

    Article  Google Scholar 

  809. Rout SR, Behera B, Maiti TK, Mohapatra S (2012) Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery. Dalton Trans 41:10777–10783

    Article  Google Scholar 

  810. Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, Westendorf AM (2013) Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J Immunol 190:6221–6229

    Article  Google Scholar 

  811. Kozlova D, Sokolova V, Zhong M, Zhang E, Yang J, Li W, Yang Y, Buer J, Westendorf AM, Epple M, Yan H (2014) Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin. Virol Sin 29:33–39

    Article  Google Scholar 

  812. Barros J, Grenho L, Fernandes MH, Manuel CM, Melo LF, Nune OC, Monteiro FJ, Ferraz MP (2015) Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite. Colloids Surf B: Biointerfaces 130:305–314

    Article  Google Scholar 

  813. Chu TC, He Q, Potter DE (2002) Biodegradable calcium phosphate nanoparticlesas a new vehicle for delivery of a potential ocular hypotensive agent. J Ocul Pharmacol Ther 18:507–514

    Article  Google Scholar 

  814. Paul W, Sharma CP (2001) Porous hydroxyapatite nanoparticles for intestinal delivery of insulin. Trends Biomater Artif Organs 14:37–38

    Google Scholar 

  815. Victor SP, Kumar TSS (2008) Tailoring calcium-deficient hydroxyapatite nanocarriers for enhanced release of antibiotics. J Biomed Nanotechnol 4:203–209

    Google Scholar 

  816. Kilian O, Alt V, Heiss C, Jonuleit T, Dingeldein E, Flesch I, Fidorra U, Wenisch S, Schnettler R (2005) New blood vessel formation and expression of VEGF receptors after implantation of platelet growth factor-enriched biodegradable nanocrystalline hydroxyapatite. Growth Factors 23:125–133

    Article  Google Scholar 

  817. Tabaković A, Kester M, Adair JH (2012) Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. WIREs Nanomed Nanobiotechnol 4:96–112

    Article  Google Scholar 

  818. Fox K, Tran PA, Tran N (2012) Recent advances in research applications of nanophase hydroxyapatite. Chem Phys Chem 13:2495–2506

    Article  Google Scholar 

  819. Madhumathi K, Kumar TSS (2014) Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed Mater 9:035002

    Article  Google Scholar 

  820. Klesing J, Wiehe A, Gitter B, Grafe S, Epple M (2010) Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J Mater Sci Mater Med 21:887–892

    Article  Google Scholar 

  821. Ling JY, Loo SC, Phung NT, Boey F, Ma J (2008) Controlled size and morphology of EDTMP-doped hydroxyapatite nanoparticles as model for 153Samarium-EDTMP doping. J Mater Sci Mater Med 19:2993–3003

    Article  Google Scholar 

  822. Reischl D, Zimmer A (2009) Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5:8–20

    Article  Google Scholar 

  823. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601

    Article  Google Scholar 

  824. Sokolova VV, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47:1382–1395

    Article  Google Scholar 

  825. Chowdhury EH (2007) pH-sensitive nano-crystals of carbonate apatite for smart and cell-specific transgene delivery. Expert Opin Drug Deliv 4:193–196

    Article  Google Scholar 

  826. Wu GJ, Zhou LZ, Wang KW, Chen F, Sun Y, Duan YR, Zhu YJ, Gu HC (2010) Hydroxylapatite nanorods: an efficient and promising carrier for gene transfection. J Colloid Interface Sci 345:427–432

    Article  Google Scholar 

  827. Zhou C, Yu B, Yang X, Huo T, Lee LJ, Barth RF, Lee RJ (2010) Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery. Int J Pharm 392:201–208

    Article  Google Scholar 

  828. Giger EV, Puigmartí-Luis J, Schlatter R, Castagner B, Dittrich PS, Leroux JC (2011) Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. J Control Release 28:87–93

    Article  Google Scholar 

  829. Olton DY, Close JM, Sfeir CS, Kumta PN (2011) Intracellular trafficking pathways involved in the gene transfer of nano-structured calcium phosphate-DNA particles. Biomaterials 32:7662–7670

    Article  Google Scholar 

  830. Do TNT, Lee WH, Loo CY, Zavgorodniy AV, Rohanizadeh R (2012) Hydroxyapatite nanoparticles as vectors for gene delivery. Ther Deliv 3:623–632

    Article  Google Scholar 

  831. Naqvi S, Maitra AN, Abdin MZ, Akmal M, Arora I, Samim M (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22:3500–3507

    Article  Google Scholar 

  832. Lee D, Upadhye K, Kumta PN (2012) Nano-sized calcium phosphate (CaP) carriers for non-viral gene delivery. Mater Sci Eng B 177:289–302

    Article  Google Scholar 

  833. Wu X, Ding D, Jiang H, Xing X, Huang S, Liu H, Chen Z, Sun H (2012) Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla. J Nanopart Res 14:708. (13 pages)

    Article  Google Scholar 

  834. Chernousova S, Klesing J, Soklakova N, Epple M (2013) A genetically active nano-calcium phosphate paste for bone substitution, encoding the formation of BMP-7 and VEGF-A. RSC Adv 3:11155–11161

    Article  Google Scholar 

  835. He P, Takeshima SN, Tada S, Akaike T, Ito Y, Aida Y (2014) pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 32:6199–6205

    Article  Google Scholar 

  836. Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, Sim SJ, Lee DS, Jeong JH (2014) Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate. J Control Release 192:122–130

    Article  Google Scholar 

  837. Alhaji SY, Chowdhury EH, Rosli R, Hassan F, Abdullah S (2014) Gene delivery potential of biofunctional carbonate apatite nanoparticles in lungs. Biomed Res Int 2014:646787

    Article  Google Scholar 

  838. Zeng B, Shi H, Liu Y (2015) A versatile pH-responsive platform for intracellular protein delivery using calcium phosphate nanoparticles. J Mater Chem B 3:9115–9121

    Article  Google Scholar 

  839. Jebali A, Kalantar SM, Hekmatimoghaddam S, Saffarzadeh N, Sheikha MH, Ghasemi N (2015) Surface modification of tri-calcium phosphate nanoparticles by DOPE and/or anti-E6 antibody to enhance uptake of antisense of E6 mRNA. Colloids Surf B: Biointerfaces 126:297–302

    Article  Google Scholar 

  840. Jung H, Kim SA, Yang YG, Yoo H, Lim SJ, Mok H (2015) Long chain microRNA conjugates in calcium phosphate nanoparticles for efficient formulation and delivery. Arch Pharm Res 38:705–715

    Article  Google Scholar 

  841. Zhang J, Sun X, Shao R, Liang W, Gao J, Chen J (2015) Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery. J Drug Deliv Sci Technol 30:1–6

    Article  Google Scholar 

  842. Chowdhury EH, Sasagawa T, Nagaoka M, Kundu AK, Akaike T (2003) Transfecting mammalian cells by DNA/calcium phosphate precipitates: effect of temperature and pH on precipitation. Anal Biochem 314:316–318

    Article  Google Scholar 

  843. Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33:136–143

    Article  Google Scholar 

  844. Welzel T, Radtke I, Meyer-Zaika W, Heumann R, Epple M (2004) Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA. J Mater Chem 14:2213–2217

    Article  Google Scholar 

  845. Sokolova VV, Radtke I, Heumann R, Epple M (2006) Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 27:3147–3153

    Article  Google Scholar 

  846. Sokolova VV, Kovtun A, Heumann R, Epple M (2007) Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate-bovine serum albumin into these nanoparticles. J Biol Inorg Chem 12:174–179

    Article  Google Scholar 

  847. Sokolova VV, Kovtun A, Prymak O, Meyer-Zaika W, Kubareva EA, Romanova EA, Oretskaya TS, Heumann R, Epple M (2007) Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing. J Mater Chem 17:721–727

    Article  Google Scholar 

  848. Neumann S, Kovtun A, Dietzel ID, Epple M, Heumann R (2009) The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials 30:6794–6802

    Article  Google Scholar 

  849. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  Google Scholar 

  850. Kovtun A, Heumann R, Epple M (2009) Calcium phosphate nanoparticles for the transfection of cells. Biomed Mater Eng 19:241–247

    Google Scholar 

  851. Hu J, Kovtun A, Tomaszewski A, Singer BB, Seitz B, Epple M, Steuhl KP, Ergün S, Fuchsluger TA (2012) A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles. Acta Biomater 8:1156–1163

    Article  Google Scholar 

  852. Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V (2010) Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem 20:8–23

    Article  Google Scholar 

  853. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Article  Google Scholar 

  854. Shan Z, Li X, Gao Y, Wang X, Li C, Wu Q (2012) Application of magnetic hydroxyapatite nanoparticles for solid phase extraction of plasmid DNA. Anal Biochem 425:125–127

    Article  Google Scholar 

  855. Roy I, Mitra S, Maitra A, Mozumdar S (2003) Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm 250:25–33

    Article  Google Scholar 

  856. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L (2010) Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142:416–421

    Article  Google Scholar 

  857. Kakizawa Y, Kataoka K (2002) Block copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir 18:4539–4543

    Article  Google Scholar 

  858. Wang KW, Zhou LZ, Sun Y, Wu GJ, Gu HC, Duan YR, Chen F, Zhu YJ (2010) Calcium phosphate/PLGA-mPEG hybrid porous nanospheres: a promising vector with ultrahigh gene loading and transfection efficiency. J Mater Chem 20:1161–1166

    Article  Google Scholar 

  859. Epple M, Kovtun A (2010) Functionalized calcium phosphate nanoparticles for biomedical application. Key Eng Mater 441:299–305

    Article  Google Scholar 

  860. Sokolova V, Neumann S, Kovtun A, Chernousova S, Heumann R, Epple M (2010) An outer shell of positively charged poly(ethyleneimine) strongly increases the transfection efficiency of calcium phosphate/DNA nanoparticles. J Mater Sci 45:4952–4957

    Article  Google Scholar 

  861. He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T, Bell SJD (2000) Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 7:899–903

    Google Scholar 

  862. He Q, Mitchell AR, Morcol T, Bell SJD (2002) Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 9:1021–1024

    Google Scholar 

  863. Yang D, Sun E (2012) Fabrication of hydroxyapatite and observation of nanoparticles entering into cells. Adv Mater Res 366:451–455

    Article  Google Scholar 

  864. Liu ZS, Tang SL, Ai ZL (2003) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 9:1968–1971

    Article  Google Scholar 

  865. Xu J, Xu P, Li Z, Huang J, Yang Z (2012) Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A 100A:738–745

    Article  Google Scholar 

  866. Sun J, Ding T (2009) P53 reaction to apoptosis induced by hydroxyapatite nanoparticles in rat macrophages. J Biomed Mater Res A 88A:673–679

    Article  Google Scholar 

  867. Huang Z, Ding T, Sun J (2012) Study of effect on cell proliferation and hemolysis of HAP and TCP nanometer particles. Adv Mater Res 378–379:711–714

    Google Scholar 

  868. Xu Z, Liu C, Wei J, Sun J (2012) Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol 32:429–435

    Article  Google Scholar 

  869. Yuan Y, Liu C, Qian J, Wang J, Zhang Y (2010) Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 31:730–740

    Article  Google Scholar 

  870. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  Google Scholar 

  871. Schmidt HT, Kroczynski M, Maddox J, Chen Y, Josephs R, Ostafin AEJ (2006) Antibody-conjugated soybean oil-filled calcium phosphate nanoshells for targeted delivery of hydrophobic molecules. Microencapsulation 23:769–781

    Article  Google Scholar 

  872. Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81A:994–1004

    Article  Google Scholar 

  873. Yeo CH, Zein SHS, Ahmad AL, McPhail DS (2012) Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells. Braz J Chem Eng 29:147–158

    Article  Google Scholar 

  874. Shao F, Liu L, Fan K, Cai Y, Yao J (2012) Ibuprofen loaded porous calcium phosphate nanospheres for skeletal drug delivery system. J Mater Sci 47:1054–1058

    Article  Google Scholar 

  875. Ma MY, Zhu YJ, Li L, Cao SW (2008) Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate preparation and application in drug delivery. J Mater Chem 18:2722–2727

    Article  Google Scholar 

  876. Cai Y, Pan H, Xu X, Hu Q, Li L, Tang R (2007) Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system. Chem Mater 19:3081–3083

    Article  Google Scholar 

  877. Zhou WY, Wang M, Cheung WL, Guo BC, Jia DM (2008) Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J Mater Sci Mater Med 19:103–110

    Article  Google Scholar 

  878. Kamitakahara M, Kimura K, Ioku K (2012) Synthesis of nanosized porous hydroxyapatite granules in hydrogel by electrophoresis. Colloids Surf B: Biointerfaces 97:236–239

    Article  Google Scholar 

  879. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK (2014) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:14017. (13 pages)

    Article  Google Scholar 

  880. Loomba L, Sekhon BS (2015) Calcium phosphate nanoparticles and their biomedical potential. J Nanomater Mol Nanotechnol 4:1. (12 pages)

    Google Scholar 

  881. Uskoković V, Wu VM (2016) Calcium phosphate as a key material for socially responsible tissue engineering. Materials 9:434. (27 pages)

    Article  Google Scholar 

  882. Wingert PA, Mizukami H, Ostafin AE (2007) Enhanced chemiluminescent resonance energy transfer in hollow calcium phosphate nanoreactors and the detection of hydrogen peroxide. Nanotechnology 18:295707. (7 pages)

    Article  Google Scholar 

  883. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    Google Scholar 

  884. Chen JH, Wang YJ, Zhou DM, Cui YX, Wang SQ, Chen YC (2010) Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cd(II) on the soils amended with nanoscale hydroxyapatite. Environ Prog Sustain Energy 29:233–241

    Article  Google Scholar 

  885. Wang D, Chu L, Paradelo M, Peijnenburg WJ, Wang Y, Zhou D (2011) Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition. J Colloid Interface Sci 15:398–407

    Article  Google Scholar 

  886. Mobasherpour I, Salahi E, Pazouki M (2012) Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arab J Chem 5:439–446

    Article  Google Scholar 

  887. Handley-Sidhu S, Renshaw JC, Yong P, Kerley R, Macaskie LE (2011) Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnol Lett 33:79–87

    Article  Google Scholar 

  888. Gandhi RM, Kousalya GN, Meenakshi S (2011) Removal of copper (II) using chitin/chitosan nano-hydroxyapatite composite. Int J Biol Macromol 48:119–124

    Article  Google Scholar 

  889. Manocha LM, Disher IA, Manocha S (2011) Sorption of cadmium ions on (AB-type) carbonated hydroxyapatite nanoparticles. Adv Sci Lett 4:44–50

    Article  Google Scholar 

  890. Gok C (2014) Neodymium and samarium recovery by magnetic nano-hydroxyapatite. J Radioanal Nucl Chem 301:641–651

    Article  Google Scholar 

  891. Fernando MS, de Silva RM, de Silva KMN (2015) Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl Surf Sci 351:95–103

    Article  Google Scholar 

  892. Ma’mani L, Heydari A, Shiroodi RK (2009) Nanohydroxyapatite microspheres as a biocompatible and recoverable catalyst for synthesis of carbon-phosphorous bond formation. Curr Org Chem 13:758–762

    Article  Google Scholar 

  893. Liu Y, Zhong H, Li L, Zhang C (2010) Temperature dependence of magnetic property and photocatalytic activity of Fe3O4/hydroxyapatite nanoparticles. Mater Res Bull 45:2036–2039

    Article  Google Scholar 

  894. Viswanadham N, Debnath S, Sreenivasulu P, Nandan D, Saxena SK, Al-Muhtaseb AH (2015) Nano porous hydroxyapatite as a bi-functional catalyst for bio-fuel production. RSC Adv 5:67380–67383

    Article  Google Scholar 

  895. Wang H, Wang C, Xiao ZL, Zhang J, Zhu Y, Guo X (2016) The hydroxyapatite nanotube as a promoter to optimize the HDS reaction of NiMo/TiO2 catalyst. Catal Today 259:340–346

    Article  Google Scholar 

  896. Khairnar RS, Mene RU, Munde SG, Mahabole MP (2011) Nano-hydroxyapatite thick film gas sensors. AIP Conf Proc 1415:189–192

    Article  Google Scholar 

  897. Viswanathan K, Vadivoo VS, Raj GD (2014) Rapid determination of hydrogen peroxide produced by Lactobacillus using enzyme coupled rhodamine isocyanide/calcium phosphate nanoparticles. Biosens Bioelectron 61:200–208

    Article  Google Scholar 

  898. Xu J, Shen X, Jia L, Zhang M, Zhou T, Wei Y (2017) Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection. Biosens Bioelectron 87:991–997

    Article  Google Scholar 

  899. Wang D, Bradford SA, Paradelo M, Peijnenburg WJGM, Zhou D (2012) Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Sci Soc Am J 76:375–388

    Article  Google Scholar 

  900. Wei W, Sun R, Jin Z, Cui J, Wei Z (2014) Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution. Appl Surf Sci 292:1020–1029

    Article  Google Scholar 

  901. Lu Y, Jiang H, Zhang NQ, Zhang M, Liu JK (2014) Assembly and copper ions detection of highly sensible and stable hydroxyapatite nanocomposite fluorescence probe. Micro Nano Lett 9:127–131

    Article  Google Scholar 

  902. Sternitzke V, Kaegi R, Audinot JN, Lewin E, Hering JG, Johnson CA (2012) Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environ Sci Technol 46:802–809

    Article  Google Scholar 

  903. Yu X, Tong S, Ge M, Zuo J (2013) Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydr Polym 92:269–275

    Article  Google Scholar 

  904. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190

    Article  Google Scholar 

  905. Celotti G, Tampieri A, Sprio S, Landi E, Bertinetti L, Martra G, Ducati C (2006) Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains? J Mater Sci Mater Med 17:1079–1087

    Article  Google Scholar 

  906. Christenson EM, Anseth KS, van den Beucken JJJP, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25:11–22

    Article  Google Scholar 

  907. Schmidt SM, Moran KA, Kent AMT, Slosar JL, Webber MJ, McCready MJ, Deering C, Veranth JM, Ostafin A (2008) Uptake of calcium phosphate nanoshells by osteoblasts and their effect on growth and differentiation. J Biomed Mater Res A 87A:418–428

    Article  Google Scholar 

  908. Motskin M, Müller KH, Genoud C, Monteith AG, Skepper JN (2011) The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials 32:9470–9482

    Article  Google Scholar 

  909. Mohsen-Nia M, Bidgoli MM, Behrashi M, Nia AM (2012) Human serum protein adsorption onto synthesis nano-hydroxyapatite. Protein J 31:150–157

    Article  Google Scholar 

  910. Powell MC, Kanarek MS (2006) Nanomaterials health effects – part 1: background and current knowledge. Wis Med J 105:16–20

    Google Scholar 

  911. Powell MC, Kanarek MS (2006) Nanomaterials health effects – part 2: uncertainties and recommendations for the future. Wis Med J 105:18–23

    Google Scholar 

  912. Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN (2009) Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30:3307–3317

    Article  Google Scholar 

  913. Wang J, Wang L, Fan Y (2016) Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement. Int J Mol Sci 17:798. (14 pages)

    Article  Google Scholar 

  914. Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TTY, Ng KW, Loo SJ (2013) Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol 87:1037–1052

    Article  Google Scholar 

  915. Ding T, Xue Y, Lu H, Huang Z, Sun J (2012) Effect of particle size of hydroxyapatite nanoparticles on its biocompatibility. IEEE Trans Nanobiosci 11:336–340

    Article  Google Scholar 

  916. Liu X, Qin D, Cui Y, Chen L, Li H, Chen Z, Gao L, Li Y, Liu J (2010) The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells. Reprod Biol Endocrinol 8:32. (8 pages)

    Article  Google Scholar 

  917. Fan Q, Wang YE, Zhao X, Loo JS, Zuo YY (2011) Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 5:6410–6416

    Article  Google Scholar 

  918. Jiang H, Liu JK, Wang JD, Lu Y, Zhang M, Yang XH, Hong DJ (2014) The biotoxicity of hydroxyapatite nanoparticles to the plant growth. J Hazard Mater 270:71–81

    Article  Google Scholar 

  919. Li S, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504

    Article  Google Scholar 

  920. Zhou W, Zheng J (2012) Direct observation of hydroxyapatite nanoparticles in vivo. Adv Mater Res 503–504:688–691

    Google Scholar 

  921. Moghimi SJ, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  Google Scholar 

  922. Xu HHK, Weir MD, Simon CG Jr (2008) Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 24:1212–1222

    Article  Google Scholar 

  923. Pujari-Palmer S, Chen S, Rubino S, Weng H, Xia W, Engqvist H, Tang L, Ott MK (2016) In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials 90:1–11

    Article  Google Scholar 

  924. Watari F, Abe S, Tamura K, Uo M, Yokoyama A, Totsuka Y (2008) Internal diffusion of micro/nanoparticles inside body. Key Eng Mater 361–363:95–98

    Article  Google Scholar 

  925. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  926. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  927. Jahnen-Dechent W, Simon U (2008) Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine 3:601–603

    Article  Google Scholar 

  928. Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  Google Scholar 

  929. Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9

    Article  Google Scholar 

  930. Dwivedi PD, Misra A, Shanker R, Das M (2009) Are nanomaterials a threat to the immune system? Nanotoxicology 3:19–26

    Article  Google Scholar 

  931. Liu Z, Xiao Y, Chen W, Wang Y, Wang B, Wang G, Xu X, Tang R (2014) Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J Mater Chem B 2:3480–3489

    Article  Google Scholar 

  932. Scientific Committee on Consumer Safety (SCCS) Opinion on Hydroxyapatite (nano). SCCS/1566/15, adopted 16 October 2015. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_191.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Dorozhkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dorozhkin, S.V. (2018). Nanodimensional and Nanocrystalline Calcium Orthophosphates. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_9

Download citation

Publish with us

Policies and ethics