Skip to main content

Droplet Impact on Solid Surfaces

  • Chapter
  • First Online:
Droplet and Spray Transport: Paradigms and Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Fluid flow and heat transfer during the impact of individual liquid droplets on a solid surface are discussed. Liquid flow during droplet impingement and spreading is described, and models to predict the maximum extend of liquid spread developed. Air is entrapped under impacting droplets, leading to the formation of a bubble at the point of impact. Droplets fragment during impact and splash if the impact velocity is sufficiently high. Splashing is influenced by surface roughness and wettability, and also by the pressure of the ambient atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RF (1975) The role of surface tension in splashing. J Colloid Interface Sci 51:350–351

    Article  Google Scholar 

  • Aziz SD, Chandra S (2000) Impact, recoil and splashing of molten metal droplets. Int J Heat Mass Transf 43:2841–2857

    Article  Google Scholar 

  • Bhola R, Chandra S (1999) Parameters controlling solidification of molten wax droplets falling on a solid surface. J Mat Sci 34:4883–4894

    Article  Google Scholar 

  • Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc A 432:13–41

    Article  Google Scholar 

  • Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18:148–180

    Article  Google Scholar 

  • Cossali GE, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22:463–472

    Article  Google Scholar 

  • Dalili A, Esmaeelpanah J, Chandra S, Mostaghimi J (2017) Coalescence and agglomeration of droplets sprayed on a substrate. Atomization Sprays 27:81–94

    Article  Google Scholar 

  • de Ruiter J, Pepper RE, Stone HA (2010) Thickness of the rim of an expanding lamella near the splash threshold. Phys Fluids 22:022104

    Article  Google Scholar 

  • Dhiman R, Chandra S (2010) Rupture of thin films formed during droplet impact. Proc R Soc A 466:1229–1245

    Article  Google Scholar 

  • Edgerton HE, Killian JR (1954) Flash! seeing the unseen by ultra-high-speed photography. Boston: Branford, p 215

    Google Scholar 

  • Gent RW, Dart NP, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc Lond A 358:2873–2911

    Article  Google Scholar 

  • Hulse-Smith L, Mehdizadeh NZ, Chandra S (2005) Deducing droplet size and impact velocity from circular bloodstains. J Forensic Sci 50:1–10

    Article  Google Scholar 

  • Josserand C, Thoroddsen ST (2016) Drop Impact on a solid surface. Annu Rev Fluid Mech 48:365–391

    Article  MathSciNet  Google Scholar 

  • Josserand C, Lemoyne L, Troeger R, Zaleski S (2005) Droplet impact on a dry surface: triggering the splash with a small obstacle. J Fluid Mech 524:47–56

    Article  Google Scholar 

  • Kim J (2007) Spray cooling heat transfer: the state of the art. Int J Heat Fluid Flow 28:753–767

    Article  Google Scholar 

  • Kim HY, Feng ZC, Chun JH (2000) Instability of a liquid jet emerging from a droplet upon collision with a solid surface. Phys Fluids 12:531–541

    Article  Google Scholar 

  • Lee JS, Weon BM, Je JH, Fezzaa K (2012) How does an air film evolve into a bubble during drop impact? Phys Rev Lett 109:204501

    Google Scholar 

  • Li EQ, Thoroddsen ST (2015) Time-resolved imaging of a compressible air-disc under a drop impacting on a solid surface. J Fluid Mech 780:636–648

    Article  Google Scholar 

  • Li R, Ashgriz N, Chandra S, Andrews JR (2008) Shape and surface texture of molten droplets deposited on cold surfaces. Surf Coat Technol 202:3960–3966

    Article  Google Scholar 

  • Mehdi-Nejad V, Mostaghimi J, Chandra S (2003) Air bubble entrapment under an impacting droplet. Phys Fluids 15:173–183

    Article  Google Scholar 

  • Mehdizadeh NZ, Chandra S, Mostaghimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373

    Article  Google Scholar 

  • Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21:151–173

    Article  Google Scholar 

  • Pan KL, Tseng KC, Wang CH (2010) Breakup of a droplet at high velocity impacting a solid surface. Exp Fluids 48:143–156

    Article  Google Scholar 

  • Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659

    Article  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: Environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  • Range K, Feuillebois F (1998) Influence of surface roughness on liquid drop impact. J Colloid Interface Sci 203:16–30

    Article  Google Scholar 

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61–93

    Article  Google Scholar 

  • Rioboo R, Tropea C, Marengo M (2001) Outcomes from a drop impact on solid surfaces. At Sprays 11:155–165

    Google Scholar 

  • Roisman IV (2009) Inertia dominated drop collisions. II. An analytical solution of the Navier-Stokes equations for a spreading viscous film. Phys Fluids 21:052104

    Article  Google Scholar 

  • Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys Fluids 21:052103

    Article  Google Scholar 

  • Scheller BL, Bousfield DW (1995) Newtonian drop impact with a solid surface. AIChE J 41:1357–1367

    Article  Google Scholar 

  • Schroll RD, Zaleski CJS, Zhang WW (2010) Impact of a viscous liquid drop. Phys Rev Lett 104:034504

    Article  Google Scholar 

  • Stow CD, Hadfield MG (1981) An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc R Soc A 373:419–441

    Article  Google Scholar 

  • Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y (2005) The air bubble entrapped under a drop mpacting on a solid surface. J Fluid Mech 545:203–212

    Article  Google Scholar 

  • Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D (2009) Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25:12293–12298

    Article  Google Scholar 

  • Ukiwe C, Kwok D (2005) On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–673

    Article  Google Scholar 

  • Vander Wal RL, Berger GM, Mozes SD (2006) The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them. Exp Fluids 40:23–32

    Article  Google Scholar 

  • Worthington AM (1908) A study of splashes. Longmans, Green, London, p 129

    Google Scholar 

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:184505

    Article  Google Scholar 

  • Xu L, Barcos L, Nagel SR (2007) Splashing of liquids: Interplay of surface roughness with surrounding gas. Phys Rev E 76:066311

    Article  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

  • Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173

    Article  Google Scholar 

  • Yoon SS, Jepsen RA, Nissen MR, O’Hern TJ (2007) Experimental investigation on splashing and nonlinear fingerlike instability of large water drops. J Fluids Struct 23:101–115

    Article  Google Scholar 

  • Yoon SS, Jepsen RA, James SC, Liu J, Aguilar G (2009) Are drop-impact phenomena described by Rayleigh-Taylor or Kelvin-Helmholtz Theory? Dry Technol 27:316–321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, S. (2018). Droplet Impact on Solid Surfaces. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplet and Spray Transport: Paradigms and Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7233-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7233-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7232-1

  • Online ISBN: 978-981-10-7233-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics