Skip to main content

Bioremediation of Metals from Lithium-Ion Battery (LIB) Waste

  • Chapter
  • First Online:
Waste Bioremediation

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Technological advancement has greatly increased the demand for newer lithium-ion batteries (LIBs) due to the more use of advanced energy storage devices like electric vehicles, consumer electronics, renewable energy storage, backup power, medical devices. The existing methods for metal recovery from LIB recycling involved: (i) aqueous stream-based limited recycling using the liquid stream mixed with soda ash with the hammer mill and shaker table (ii) supercritical CO2-based recycling of cathode and anode (iii) pyro- and hydrometallurgical processes. Microbial participation for the recovery of metals from waste (LIBs) was found to be an attractive method due to its environmental-friendly approaches. Lysinibacillus, Micrococcus, Sporosarcina, Empedobacter, Barrientosiimonas, Lysinibacillus, Paenibacillus, Bacillus, Acidithiobacillus are among the species involved in the recycling of metal form LIB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper J (2002) The battery: not yet a terminal case. Science 296(5571):1224–1226

    Article  CAS  Google Scholar 

  • Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117:1–12

    Article  Google Scholar 

  • Barik SP, Prabaharan G, Kumar B (2016) An innovative approach to recover the metal values from spent lithium-ion batteries. Waste Manage 51:222–226

    Article  CAS  Google Scholar 

  • Bernardes AM, Espinosa DCR, Tenório JS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130(1):291–298

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid) s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology 4(2):93–97

    Article  CAS  Google Scholar 

  • Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112(1):247–254

    Article  CAS  Google Scholar 

  • Cerruti C, Curutchet G, Donati E (1998) Bio-dissolution of spent nickel–cadmium batteries using Thiobacillus ferrooxidans. J Biotechnol 62(3):209–219

    Article  CAS  Google Scholar 

  • Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol 88(7):1191–1199

    Article  CAS  Google Scholar 

  • Chen X, Chen Y, Zhou T, Liu D, Hu H, Fan S (2015a) Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manage 38:349–356

    Article  CAS  Google Scholar 

  • Chen X, Luo C, Zhang J, Kong J, Zhou T (2015b) Sustainable recovery of metals from spent lithium-ion batteries: a green process. ACS Sustain Chem Eng 3(12):3104–3113

    Article  CAS  Google Scholar 

  • Chen X, Zhou T, Kong J, Fang H, Chen Y (2015c) Separation and recovery of metal values from leach liquor of waste lithium nickel cobalt manganese oxide based cathodes. Sep Purif Technol 141:76–83

    Article  CAS  Google Scholar 

  • Chen X, Fan B, Xu L, Zhou T, Kong J (2016) An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J Clean Prod 112:3562–3570

    Article  CAS  Google Scholar 

  • Contestabile M, Panero S, Scrosati B (2001) A laboratory-scale lithium-ion battery recycling process. J Power Sources 92(1):65–69

    Article  CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Ind J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Dewulf J, Van der Vorst G, Denturck K, Van Langenhove H, Ghyoot W, Tytgat J, Vandeputte K (2010) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour Conserv Recycl 54(4):229–234

    Article  Google Scholar 

  • Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170(1):210–215

    Article  CAS  Google Scholar 

  • Ehrlich HL, Newman DK, Kappler A (eds) (2015) Ehrlich’s geomicrobiology. CRC Press, Boca Raton

    Google Scholar 

  • Ferreira DA, Prados LMZ, Majuste D, Mansur MB (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J Power Sources 187(1):238–246

    Article  CAS  Google Scholar 

  • Freitas MBJG, Garcia EM (2007) Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J Power Sources 171(2):953–959

    Article  CAS  Google Scholar 

  • Freitas MBJG, Celante VG, Pietre MK (2010) Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J Power Sources 195(10):3309–3315

    Article  CAS  Google Scholar 

  • Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, Rutz M (2012) Development of a recycling process for Li-ion batteries. J Power Sources 207:173–182

    Article  CAS  Google Scholar 

  • Guo Y, Li F, Zhu H, Li G, Huang J, He W (2016) Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Manage 51:227–233

    Article  CAS  Google Scholar 

  • Hanisch C, Schünemann JH, Diekmann J, Westphal B, Loellhoeffel T, Prziwara PF, Haselrieder W, Kwade A (2015) In-production recycling of active materials from lithium-ion battery scraps. ECS Trans 64(22):131–145

    Article  CAS  Google Scholar 

  • Horeh NB, Mousavi SM, Shojaosadati SA (2016) Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources 320:257–266

    Article  CAS  Google Scholar 

  • Iizuka A, Yamashita Y, Nagasawa H, Yamasaki A, Yanagisawa Y (2013) Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation. Sep Purif Technol 113:33–41

    Article  CAS  Google Scholar 

  • Ilyas S, Ruan C, Bhatti HN, Ghauri MA, Anwar MA (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101(3):135–140

    Article  CAS  Google Scholar 

  • Jaafar R, Al-Sulami A, Al-Taee A, Aldoghachi F, Napes S (2015) Biosorption and bioaccumulation of some heavy metals by Deinococcus radiodurans isolated from soil in Basra Governorate-Iraq. J Biotechnol Biomater 5:190

    Google Scholar 

  • Jaafar R, Al-Sulami A, Al-Taee A, Aldoghachi F, Suhaimi N, Mohammed S (2016) Biosorption of some heavy metals by Deinococcus radiodurans isolated from soil in Basra Governorate-Iraq. J Bioremediat Biodegrad 7(332):2

    Google Scholar 

  • Jian G, Guo J, Wang X, Sun C, Zhou Z, Yu L, Kong F, Qiu JR (2012) Study on separation of cobalt and lithium salts from waste mobile-phone batteries. Proc Environ Sci 16:495–499

    Article  CAS  Google Scholar 

  • Joulié M, Laucournet R, Billy E (2014) Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J Power Sources 247:551–555

    Article  Google Scholar 

  • Ku H, Jung Y, Jo M, Park S, Kim S, Yang D, Rhee K, An EM, Sohn J, Kwon K (2016) Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater 313:138–146

    Article  CAS  Google Scholar 

  • Lee CK, Rhee KI (2002) Preparation of LiCoO2 from spent lithium-ion batteries. J Power Sources 109(1):17–21

    Article  CAS  Google Scholar 

  • Li J, Shi P, Wang Z, Chen Y, Chang CC (2009) A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 77(8):1132–1136

    Article  CAS  Google Scholar 

  • Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010a) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage 30(12):2615–2621

    Article  CAS  Google Scholar 

  • Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010b) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176(1):288–293

    Article  CAS  Google Scholar 

  • Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K (2012) Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sources 218:21–27

    Article  CAS  Google Scholar 

  • Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K (2015) Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources 282:544–551

    Article  CAS  Google Scholar 

  • Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536

    Article  Google Scholar 

  • Manasi RV, Kumar ASK, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185

    Google Scholar 

  • Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518

    Article  CAS  Google Scholar 

  • Meshram P, Pandey BD, Mankhand TR (2015a) Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects. Waste Manage 45:306–313

    Article  CAS  Google Scholar 

  • Meshram P, Pandey BD, Mankhand TR (2015b) Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem Eng J 281:418–427

    Article  CAS  Google Scholar 

  • Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage 28(2):333–338

    Article  CAS  Google Scholar 

  • Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155

    Article  CAS  Google Scholar 

  • Nayaka GP, Manjanna J, Pai KV, Vadavi R, Keny SJ, Tripathi VS (2015) Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 151:73–77

    Article  CAS  Google Scholar 

  • Nayaka GP, Pai KV, Manjanna J, Keny SJ (2016a) Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste Manage 51:234–238

    Article  CAS  Google Scholar 

  • Nayaka GP, Pai KV, Santhosh G, Manjanna J (2016b) Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy 161:54–57

    Article  CAS  Google Scholar 

  • Nayl AA, Elkhashab RA, Badawy SM, El-Khateeb MA (2014) Acid leaching of mixed spent Li-ion batteries. Arab J Chem

    Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manage 32(5):979–990

    Article  CAS  Google Scholar 

  • Richa K, Babbitt CW, Gaustad G, Wang X (2014) A future perspective on lithium-ion battery waste flows from electric vehicles. Resour Conserv Recycl 83:63–76

    Article  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Appl Microbiol Biotechnol 63(3):239–248

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59(2):159–175

    Article  CAS  Google Scholar 

  • Sonoc A, Jeswiet J (2014) A review of lithium supply and demand and a preliminary investigation of a room temperature method to recycle lithium ion batteries to recover lithium and other materials. Procedia Cirp 15:289–293

    Article  Google Scholar 

  • Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage 32(8):1575–1582

    Article  CAS  Google Scholar 

  • Swain B, Jeong J, Lee JC, Lee GH, Sohn JS (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167(2):536–544

    Article  CAS  Google Scholar 

  • Vanitha M, Balasubramanian N (2013) Waste minimization and recovery of valuable metals from spent lithium-ion batteries–a review. Environ Technol Rev 2(1):101–115

    Article  CAS  Google Scholar 

  • Wang X, Gaustad G, Babbitt CW, Bailey C, Ganter MJ, Landi BJ (2014) Economic and environmental characterization of an evolving Li-ion battery waste stream. J Environ Manage 135:126–134

    Article  CAS  Google Scholar 

  • Willner J, Fornalczyk A (2013) Extraction of metals from electronic waste by bacterial leaching. Environ Prot Eng 39(1):197–208

    CAS  Google Scholar 

  • Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S, Li L (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Biores Technol 100(24):6163–6169

    Article  CAS  Google Scholar 

  • Xin Y, Guo X, Chen S, Wang J, Wu F, Xin B (2016) Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J Clean Prod 116:249–258

    Article  CAS  Google Scholar 

  • Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177(2):512–527

    Article  CAS  Google Scholar 

  • Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol 44(10):1129–1165

    Article  CAS  Google Scholar 

  • Zeng X, Li J, Shen B (2015) Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J Hazard Mater 295:112–118

    Article  CAS  Google Scholar 

  • Zhu SG, He WZ, Li GM, Xu Z, Zhang XJ, Huang JW (2012) Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans Nonferrous Metals Soc China 22(9):2274–2281

    Google Scholar 

  • Zou H, Gratz E, Apelian D, Wang Y (2013) A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem 15(5):1183–1191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dolker, T., Pant, D. (2018). Bioremediation of Metals from Lithium-Ion Battery (LIB) Waste. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_14

Download citation

Publish with us

Policies and ethics