Skip to main content

Application of Microbes in Remediation of Hazardous Wastes: A Review

  • Chapter
  • First Online:
Bioremediation: Applications for Environmental Protection and Management

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Currently, pollution control, environmental management, treatment and recycling of wastes have become critical issues. One of the major reasons behind the growing environmental pollution is illegal disposal of waste. Due to the toxicity of waste, establishing efficient and environmentally friendly method to degrade and detoxify these wastes represent an important research challenge. Various physiochemical methods are applied all over the world for solid waste management. The application of microbes to degrade waste is gaining attention due to its environmental and economic benefits. The present review deals with application of microbes in bioremediation of hazardous wastes. This review also outlines the various factors that limit the use of microbial waste bioremediation technologies. Moreover, the prospects of waste valorization for the production of biopolymers, biofuels, biocompost and industrial enzymes are also discussed in the review article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Amer AE (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21:71–80

    Article  CAS  Google Scholar 

  • Agarwal SK (1998) Environmental biotechnology, 1st edn. APH Publishing Corporation, New Delhi, India, pp 267–289

    Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  Google Scholar 

  • Alexandri M, Papapostolou H, Vlysidis A, Gardeli C, Komaitis M, Papanikolaou S, Koutinas AA (2016) Extraction of phenolic compounds and succinic acid production from spent sulphite liquor. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4880

    Google Scholar 

  • Ali U, Syed JH, Malik RN, Katsoyiannis A, Li J, Zhang G, Jones KC (2014) Organochlorine pesticides (OCPs) in South Asian region: a review. Sci Total Environ 476:705–717

    Article  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Fundamentals and applications. In: Microbial ecology, 4th edn. Benjamin/Cummings, San Francisco, Calif, USA, pp 523–530

    Google Scholar 

  • Aung WL, Aye KN, Hlaing NN (2012) Biosorption of lead (Pb2+) by using Chlorella vulgaris. In: International conference on chemical engineering and its applications, Bangkok, Thailand

    Google Scholar 

  • Balakrishnan M, Batra VS (2011) Valorization of solid waste in sugar factories with possible applications in India: a review. J Environ Manag 92:2886–2891

    Article  CAS  Google Scholar 

  • Bardhan SK, Gupta S, Gorman ME, Haider MA (2015) Biorenewable chemicals: feedstocks, technologies and the conflict with food production. Renew Sust Energy Rev 51:506–520

    Article  CAS  Google Scholar 

  • Bonomo RP, Cennamo G, Purrello R, Santoro AM, Zappala R (2001) Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity‎. J Inorg Biochem 83:67–75

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Google Scholar 

  • Brady NC, Weil RR (2000) Elements of the nature and properties of soils. Prentice Hall, Upper Saddle River, NJ, USA, pp 463–471

    Google Scholar 

  • Buffle J, De Vitre RR (1993) Chemical and biological regulation of aquatic systems. Lewis Publishers, p 40

    Google Scholar 

  • Chang BV, Chang W, Yuan SY (2003) Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv Environ Res 7:623–628

    Article  CAS  Google Scholar 

  • Chen B, Yuan M, Qian L (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12:1350–1359

    Article  CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  Google Scholar 

  • Deng L, Zhu X, Su Y (2008) Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chin J Ocean Limnol 26:45–49

    Article  CAS  Google Scholar 

  • Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123

    Article  CAS  Google Scholar 

  • Dyer M, Heiningen EV, Gerritse J (2003) A field trial for in-situ bioremediation of 1, 2-DCA. Eng Geol 70:315–320

    Article  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Bio 3:195–199

    Google Scholar 

  • Edris G, Alhamed Y, Alzahrani A (2012) Cadmium and lead biosorption by Chlorella vulgaris. In: IWTA, 16th international water technology conference, Istanbul, Turkey

    Google Scholar 

  • Elizabeth H, Harris (2008) Introduction to Chlamydomonas and its laboratory use. In: The chlamydomonas sourcebook, vol 1, 2nd edn. Academic Press. ISBN-10: 0123708745

    Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184:281–289

    Article  CAS  Google Scholar 

  • Fuentes MS, Sáez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231

    Article  CAS  Google Scholar 

  • Ghosh P, Das MT, Thakur IS (2014) Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1. Environ Sci Pollut Res 21:8084–8094

    Article  CAS  Google Scholar 

  • Haghollahi A, Fazaelipoor MH, Schaffie M (2016) The effect of soil type on the bioremediation of petroleum contaminated soils. J Environ Manage 180:197–201

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Hess A, Zarda B, Hahn D (1997) In situ analysis of denitrifying toluene and m-xylene degrading bacteria in a diesel fuel contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141

    CAS  Google Scholar 

  • Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa J, Nishihara T, Miyamoto K, Hirata Z (2005) Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fuscavar vacuolata. Environ Toxicol Chem 24:1896–1901

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. https://doi.org/10.4061/2011/805187

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Garcia IL, Kookos IK, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627

    Article  CAS  Google Scholar 

  • Kumar JI, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Env Bio 33:27–31

    CAS  Google Scholar 

  • Kumari M, Ghosh P, Thakur IS (2014) Microcosmic study of endosulfan degradation by Paenibacillus sp. ISTP10 and its toxicological evaluation using mammalian cell line. Int Biodeter Biodegr 96:33–40

    Article  Google Scholar 

  • Kumari M, Ghosh P, Thakur IS (2016) Landfill leachate treatment using bacto-algal co-culture: an integrated approach using chemical analyses and toxicological assessment. Ecotoxicol Environ Saf 128:44–51

    Article  CAS  Google Scholar 

  • Lei A, Wong Y, Tam N (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201

    CAS  Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal metabolism of DDT. Environ Pollut 109:35–42

    Article  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Venkateswarlu UA (1994) Biodegradation of methyl-parathion by micro-algae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  Google Scholar 

  • Mei LI, Xitao X, Renhao XUE, Zhili LIU (2006) Effects of strontium-induced stress on marine algae Platymonas subcordiformis (Chlorophyta: Volvocales). Chinese J Oceanol Limnol 24:154–160

    Article  Google Scholar 

  • Mukherjee A, Dumont MJ, Raghavan V (2015) Sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183

    Article  CAS  Google Scholar 

  • Mukherjee I, Mittal A (2005) Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum. Bull Environ Contam Toxicol 75:1034–1040

    Article  CAS  Google Scholar 

  • Orloff K, Falk H (2003) An international perspective on hazardous waste practices. Int J Hyg Environ Health 206:291–302

    Article  CAS  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26:27–38

    Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74:17–24

    Article  CAS  Google Scholar 

  • Pereira ARB, Soares CRFS, da Silva JF, da Silva M, Chalfoun SM (2014) Removal of trace element by isolates of Aspergillus brasiliensis EPAMIG 0084 and Penicillium cirtinum EPAMIG 0086 in biofilters. African J Biotech 13:3759–3773

    Article  CAS  Google Scholar 

  • Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactic acid fermentation. In: Obare SO, Luque R (eds) Green technologies for the environment, American Chemical Society, pp 247–263

    Google Scholar 

  • Reddy C, Mathew Z (2002) Bioremediation potential of white rot fungi. In: Gadd G (eds) Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sayara T, Sarra M, Sanchez A (2010) Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. J Hazard Mater 179:999–1006

    Article  CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52:3030–3035

    Article  CAS  Google Scholar 

  • Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2017) Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environm Sci Pollut Res 1–21. https://doi.org/10.1007/s11356-017-8995-4

  • Shetty PK, Mitra J, Murthy NBK, Namitha KK, Savitha KN, Raghu K (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC 1384. Curr Sci 79:1381–1383

    CAS  Google Scholar 

  • Siddique T, Benedict CO, Muhammad A, William TF (2003) Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea sp. J Agric Food Chem 51:8015–8019

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New York, NY, USA

    Book  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4:1–6

    Google Scholar 

  • Strong PJ, Burgess JE (2008) Fungal and enzymatic remediation of a wine lees and five wine-related distillery wastewaters. Bioresour Technol 99:6134–6142

    Article  CAS  Google Scholar 

  • Sun L, Wu Sh (2007) Analysis and thought about nationwide general investigation on hazardous waste disposal facilities. Nonferrous Met Eng Res 28:7–17

    CAS  Google Scholar 

  • Sutherland JB, Rafii F, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation: microbial Transformation and degradation of toxic organic chemicals. Wiley-Liss, New York

    Google Scholar 

  • Tang CY, Criddle QS, Fu CS, Leckie JO (2007) Effect of flux and technique. Biol Med 1:1–6

    Google Scholar 

  • Thibault GT, Elliott NW (1979) Accelerating the biological cleanup of hazardous materials spills. In: Proceedings oil and hazards materials. Spills: prevention-control cleanup-recovery-disposal

    Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975) Petroleum degrading achlorophyllous alga Prototheca zopfii. Nature 254:423–424

    Article  CAS  Google Scholar 

  • Widdowson MA (2004) Modeling natural attenuation of chlorinated ethenes under spatially varying redox conditions. Biodegradation 15:435–451

    Article  CAS  Google Scholar 

  • Yan X, Yang Y, Li Y, Sheng G, Yan G (2002) Accumulation and biodegradation of anthracene by Chlorella protothecoides under different trophic conditions. Chin J Appl Ecol 13:145–150

    CAS  Google Scholar 

  • Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem 44:1185–1189

    Article  CAS  Google Scholar 

  • Zhang H, Hu C, Jia X, Xu Y, Wu C, Chen L, Wang F (2012) Characteristics of c-hexachlorocyclohexane biodegradation by a nitrogen-fixing cyanobacterium Anabaena azotica. J Appl Phycol 24:221–225

    Article  CAS  Google Scholar 

  • Zhou M, Liu Y, Zeng G, Li X, Xu W, Fan T (2007) Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotech 23:43–48

    Article  CAS  Google Scholar 

  • Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Tech 98:2859–2865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to Department of Science and Technology, Govt. of India, for providing INSPIRE Faculty fellowship to Ghosh, P [DST/INSPIRE/04/2016/000362].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Shekhar Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, M., Ghosh, P., Thakur, I.S. (2018). Application of Microbes in Remediation of Hazardous Wastes: A Review. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_11

Download citation

Publish with us

Policies and ethics