Skip to main content

Sensitivity of ICAL to TeV Gamma Rays at INO

  • Conference paper
  • First Online:
Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 201))

  • 874 Accesses

Abstract

We report the sensitivity of Iron CALorimeter (ICAL) detector to the detection of TeV gamma rays from various astrophysical sources at India-based Neutrino Observatory (INO). The ICAL detector is proposed to be of 51 kton with an average magnetic field of \(\sim \)1.3 T. The electromagnetic showers generated by high-energy gamma rays at the atmosphere will produce down-going muons through either muon pair production or pion decay. The gamma rays can be traced by detecting these muons using ICAL. Most of the space- and underground-based experiments have detected them directly and indirectly, but the advantage of using ICAL for their detection is to measure the \(\mu ^{+}\) to \(\mu ^{-}\) ratio, which is 1 in case of pair production, at very high energy (\(\ge \)50 GeV). Here, we have shown its detection ability for the appropriate astrophysical 2FHL sources listed in “The Second Catalog of Hard Fermi-LAT Sources,” where the signal-to-noise ratio is suppressed by factor of 5\(\sigma \) for ICAL running period of five years for spectral index of \(\le \)0.45.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www-glast.stanford.edu/.

  2. 2.

    http://veritas.sao.arizona.edu/about-veritas-mainmenu-81.

  3. 3.

    https://www.mpi-hd.mpg.de/hfm/HESS/.

  4. 4.

    http://scipp.ucsc.edu/milagro/papers/.

  5. 5.

    http://www.asdc.asi.it/fermi2fhl/.

References

  1. M.G. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101 (2014)

    Article  ADS  Google Scholar 

  2. M.G. Aartsen, et al., The IceCube neutrino observatory—Contributions to ICRC 2015 Part II: atmospheric and astrophysical diffuse neutrino searches of all flavors. In Proceedings of 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, 30 July–6 Aug 2015

    Google Scholar 

  3. A.U.E. Abeysekara, On the sensitivity of the HAWC observatory to gamma-ray bursts. Astropart. Phys. 35, 641–650 (2012)

    Google Scholar 

  4. A. Abchiche, et al., in Contributions of the Cherenkov Telescope Array (CTA) to the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma 2016) (2016)

    Google Scholar 

  5. S.P. Walely1, D. Horan, TeVCat: an online catalog for very high energy gamma-ray astronomy. In Proceedings of 30th International Cosmic Ray Conference (ICRC 2008), vol. 3 (2008), pp. 1341–1344

    Google Scholar 

  6. M. Ackermann et al., 2FHL: the second catalog of hard Fermi-LAT sources. Astrophys. J. Suppl. 222(1), 5 (2016)

    Article  ADS  Google Scholar 

  7. M. Drees, F. Halzen, K. Hikasa, Muons in \(\gamma \) showers. Phys. Rev. D 39, 1310 (1989)

    Article  ADS  Google Scholar 

  8. A. Kumar et al., Invited review: physics potential of the ICAL detector at the India-based neutrino observatory (INO). Pramana 88(5), 79 (2017)

    Article  ADS  Google Scholar 

  9. A. Ghosh, T. Thakore, S. Choubey, Determining the neutrino mass hierarchy with INO, T2K. NOvA and reactor experiments. JHEP 04, 009 (2013)

    Article  ADS  Google Scholar 

  10. T. Thakore, A. Ghosh, S. Choubey, A. Dighe, The reach of INO for atmospheric neutrino oscillation parameters. JHEP 05, 058 (2013)

    Article  ADS  Google Scholar 

  11. N. Dash, V.M. Datar, G. Majumder, Sensitivity of the INO-ICAL detector to magnetic monopoles. Astropart. Phys. 70, 33–38 (2015)

    Article  ADS  Google Scholar 

  12. N. Dash, V.M. Datar, G. Majumder, Sensitivity for detection of decay of dark matter particle using ICAL at INO. Pramana 86(4), 927–937 (2016)

    Article  ADS  Google Scholar 

  13. S. Choubey, A. Ghosh, T. Ohlsson, D. Tiwari, Neutrino physics with non-standard interactions at INO. JHEP 12, 126 (2015)

    ADS  Google Scholar 

  14. A. Chatterjee, R. Gandhi, J. Singh, Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos. JHEP 06, 045 (2014)

    Article  ADS  Google Scholar 

  15. S. Panda, S.I. Sinegovsky, High-energy atmospheric muon flux expected at India-based neutrino observatory. Int. J. Mod. Phys. A 23, 2933–2942 (2008)

    Article  ADS  Google Scholar 

  16. T.L. Astraatmadja, On the detection of TeV gamma-rays from GRB with km-cube neutrino telescopes—I. Muon event rate from single GRBs. Mon. Not. Roy. Astron. Soc. 418, 1774–1786 (2011)

    Article  ADS  Google Scholar 

  17. F. Halzen, A. Kappes, A.O. Murchadha, Gamma-ray astronomy with muons: sensitivity of IceCube to PeVatrons in the Southern sky. Phys. Rev. D 80, 083009 (2009)

    Article  ADS  Google Scholar 

  18. H. Bethe, W. Heitler, On the stopping of fast particles and on the creation of positive electrons. Proc. Roy. Soc. Lond. A 146, 83–112 (1934)

    Article  ADS  MATH  Google Scholar 

  19. T.K. Gaisser, R. Engel, E. Resconi, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge) (1990)

    Google Scholar 

  20. A. Chatterjee, K.K. Meghna, K. Rawat, T. Thakore, V. Bhatnagar, R. Gandhi, D. Indumathi, N.K. Mondal, N. Sinha, A simulations study of the muon response of the iron calorimeter detector at the India-based neutrino observatory. JINST 9, P07001 (2014)

    Article  ADS  Google Scholar 

  21. C. Arpesella, A review of running underground experiments. Nucl. Instrum. Meth. A 277, 1–10 (1989)

    Article  ADS  Google Scholar 

  22. M. Guan, J. Cao, C. Yang, Y. Sun, K.B. Luk, Muon simulation at the Daya Bay site. In Lawrence Berkeley National Laboratory Paper LBNL-4262E (2006)

    Google Scholar 

  23. N. Gupta, P. Bhattacharjee, Detecting TeV gamma-rays from gamma-ray bursts by ground based muon detectors. arXiv:astro-ph/0108311

  24. P.A. Schreiner, J. Reichenbacher, M.C. Goodman, Interpretation of the underground muon charge ratio. Astropart. Phys. 32, 61–71 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitali Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dash, N., Moharana, R. (2018). Sensitivity of ICAL to TeV Gamma Rays at INO. In: Biswas, S., Das, S., Ghosh, S. (eds) Advanced Detectors for Nuclear, High Energy and Astroparticle Physics. Springer Proceedings in Physics, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-10-7665-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7665-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7664-0

  • Online ISBN: 978-981-10-7665-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics