Skip to main content

Conformational Equilibrium of Human Platelet Integrin Investigated by Three-Dimensional Electron Cryo-Microscopy

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 87))

Abstract

Integrins are bidirectional transmembrane receptors that play central roles in hemostasis and arterial thrombosis. They have been subject to structural studies for many years, in particular using X-ray crystallography, nuclear magnetic resonance spectroscopy, and two-dimensional negative stain electron microscopy. Despite considerable progress, a full consensus on the molecular mechanism of integrin activation is still lacking. Three-dimensional reconstructions of full-length human platelet integrin αIIbβ3 in lipid-bilayer nanodiscs obtained by electron cryo-microscopy and single-particle reconstruction have shed new light on the activation process. These studies show that integrin αIIbβ3 exists in a continuous conformational equilibrium ranging from a compact nodular conformation similar to that obtained in crystal structures to a fully extended state with the leg domains separated. This equilibrium is shifted towards the extended conformation when extracellular ligands, cytosolic activators and lipid-bilayer nanodiscs are added. Addition of cytosolic activators and extracellular ligands in the absense of nanodiscs produces significantly less dramatic shifts, emphasizing the importance of the membrane bilayer in the activation process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adair BD, Xiong JP, Maddock C, Goodman SL, Arnaout MA, Yeager M (2005) Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin. J Cell Biol 168:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID (2009) The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J 28:3623–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaout MA, Mahalingam B, Xiong JP (2005) Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 21:381–410

    Article  CAS  PubMed  Google Scholar 

  • Askari JA, Buckley PA, Mould AP, Humphries MJ (2009) Linking integrin conformation to function. J Cell Sci 122:165–170

    Article  CAS  PubMed  Google Scholar 

  • Banno A, Ginsberg MH (2008) Integrin activation. Biochem Soc Trans 36:229–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Baumeister W (2016) Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol 26:825–837

    Article  PubMed  Google Scholar 

  • Bouaouina M, Harburger DS, Calderwood DA (2012) Talin and signaling through integrins. Methods Mol Biol 757:325–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunch TA (2010) Integrin alphaIIbbeta3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity. J Biol Chem 285:1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH (1999) The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 274:28071–28074

    Article  CAS  PubMed  Google Scholar 

  • Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3:1–14

    Article  Google Scholar 

  • Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular alpha4-integrin conformational activation. Biophys J 85:3951–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chigaev A, Waller A, Amit O, Halip L, Bologa CG, Sklar LA (2009) Real-time analysis of conformation-sensitive antibody binding provides new insights into integrin conformational regulation. J Biol Chem 284:14337–14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WS, Rice WJ, Stokes DL, Coller BS (2013) Three-dimensional reconstruction of intact human integrin αIIbβ3; new implications for activation-dependent ligand binding. Blood 122:4165–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller BS (2015) αIIbβ3: structure and function. J Thromb Haemost 13(Suppl 1):S17–S25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho A, Garcia C, Gonzalez-Rodriguez J, Lillo MP (2007) Conformational changes in human integrin alphaIIbbeta3 after platelet activation, monitored by FRET. Biophys Chem 130:76–87

    Article  CAS  PubMed  Google Scholar 

  • Dai A, Ye F, Taylor DW, Hu G, Ginsberg MH, Taylor KA (2015) The structure of a full-length membrane-embedded integrin bound to a physiological ligand. J Biol Chem 290:27168–27175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Mi LZ, Zhu J, Wang W, Hu P, Luo BH, Springer TA (2012) α(V)β(3) integrin crystal structures and their functional implications. Biochemistry 51:8814–8828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eng ET, Smagghe BJ, Walz T, Springer TA (2011) Intact (alpha)IIb(beta)3 integrin is extended after activation as measured by solution X-ray scattering and electron microscopy. J Biol Chem 286:35218–35226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Leiro R, Scheres SH (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO, Naba A (2012) Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Carman CV, Springer TA (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Lau TL, Ulmer TS, Ginsberg MH (2009) Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood 113:4747–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinashi T (2006) Adhere upright: a switchblade-like extension of beta2 integrins. Immunity 25:521–522

    Article  CAS  PubMed  Google Scholar 

  • Lau T-L, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Springer TA (2017) Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci U S A 114:4685–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546:118–123

    Article  CAS  PubMed  Google Scholar 

  • Liddington RC (2014) Structural aspects of integrins. Adv Exp Med Biol 819:111–126

    Article  CAS  PubMed  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser M, Legate KR, Zent R, Fossler R (2009) The tail of integrins, talin, and kindlins. Science 324:895–899

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA (2006) Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 25:583–594

    Article  CAS  PubMed  Google Scholar 

  • Oikonomou CM, Jensen GJ (2017) Cellular electron cryotomography: toward structural biology in situ. Annu Rev Biochem 86:873–896

    Article  CAS  PubMed  Google Scholar 

  • Rocco M, Rosano C, Weisel JW, Horita DA, Hantgan RR (2008) Integrin conformational regulation: uncoupling extension/tail separation from changes in the head region by a multiresolution approach. Structure 16:954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres SH (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw AW, McLean MA, Sligar SG (2004) Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett 556:260–264

    Article  CAS  PubMed  Google Scholar 

  • Spahn CM, Penczek PA (2009) Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. Curr Opin Struct Biol 19:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Xia W, Li J, Walz T, Humphries MJ, Vestweber D, Cabañas C, Lu C, Springer TA (2016) Relating conformation to function in integrin α5β1. Proc Natl Acad Sci U S A 113:E3872–E3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH (2016) Resolution advances in cryo-EM enable application to drug discovery. Curr Opin Struct Biol 41:194–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Guo SS, Fässler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215:445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi J, Petre BM, Walz T, Springer TA (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–511

    Article  CAS  PubMed  Google Scholar 

  • Takagi J, Strokovich K, Springer TA, Walz T (2003) Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J 22:4607–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID (2007) Structural basis of integrin activation by talin. Cell 128:171–182

    Article  CAS  PubMed  Google Scholar 

  • Wei W-C, Lin H-H, Shen M-R, Tang M-J (2008) Mechanosensing machinery for cells under low substratum rigidity. Am J Physiol Cell Physiol 295:C1579–C1589

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Zhu J, Chen X, Mi L, Nishida N, Springer TA (2010) Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO J 29:666–679

    Article  CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J-P, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-asp ligand. Science 296:151–155

    Article  CAS  PubMed  Google Scholar 

  • Xiong J-P, Stehle T, Goodman SL, Arnaout MA (2003) New insights into the structural basis of integrin activation. Blood 102:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Xiong J-P, Mahalingham B, Alonso JL, Borrelli LA, Rui X, Anand S, Hyman BT, Rysiok T, Müller-Pompalla D, Goodman SL, Arnaout MA (2009a) Crystal structure of the complete integrin alphaVbeta3 ectodomain plus an alpha/beta transmembrane fragment. J Cell Biol 186:589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XP, Zhai D, Kim E, Swift M, Reed C, Volkmann N, Hanein D (2013) Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis 4:e683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XP, Kim E, Swift M, Smith JW, Volkmann N, Hanein D (2016) Three-dimensional structures of full-length, membrane-embedded human αIIbβ3 integrin complexes. Biophys J 110:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Liu J, Winkler H, Taylor KA (2008) Integrin alpha IIb beta 3 in a membrane environment remains the same height after Mn2+ activation when observed by cryoelectron tomography. J Mol Biol 378:976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH (2010) Recreation of the terminal events in physiological integrin activation. J Cell Biol 188:157–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Kim C, Ginsberg MH (2012) Reconstruction of integrin activation. Blood 119:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Boylan B, Luo B-H, Newman PJ, Springer TA (2007) Tests of the extension and deadbolt models of integrin activation. J Biol Chem 282:11914–11920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Luo B-H, Xiao T, Zhang C, Nishida N, Springer TA (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 32:849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Luo B-H, Barth P, Schonbrun J, Baker D, Springer TA (2009) The structure of a receptor with two associating transmembrane domains on the cell surface: integrin alphaIIbbeta3. Mol Cell 34:234–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhu J, Springer TA (2013) Complete integrin headpiece opening in eight steps. J Cell Biol 201:1053–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health research grants CA179087, OD012372 (DH) and GM115972 (NV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Volkmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanein, D., Volkmann, N. (2018). Conformational Equilibrium of Human Platelet Integrin Investigated by Three-Dimensional Electron Cryo-Microscopy. In: Harris, J., Boekema, E. (eds) Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-10-7757-9_12

Download citation

Publish with us

Policies and ethics