Skip to main content

Functional Mechanisms of ABC Transporters as Revealed by Molecular Simulations

  • Chapter
  • First Online:
The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery

Abstract

Active transport in cells is accomplished by a class of integral membrane proteins known as ATP-binding cassette (ABC) transporters. The energy source powering these molecular machines is the free energy generated by the binding of ATP molecules to nucleotide-binding domains (NBDs), as well as the free energy generated by ATP hydrolysis. The opening and closing motions of the NBDs are driven by these energies, which are propagated through transmembrane domains (TMDs) via mechanical transmission segments (coupling helices). As a result, the opening and closing motions of the TMDs are generated, which allow the uptake and release of substrates. In these processes, the chemical energy of ATP is converted into mechanical motion, a typical example of chemo-mechanical coupling. In this review, we describe the current understanding of this coupling mechanism, with a focus on the cooperative role of ATP and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Gu W, Geyer T, Helms V (2011) Adhesive water networks facilitate binding of protein interfaces. Nat Commun 2:261

    Article  Google Scholar 

  • Arai N, Furuta T, Sakurai M (2017) Analysis of an ATP-induced conformational transition of ABC transporter MsbA using a coarse-grained model. Biophys Physicobiol 14:161–171

    Article  Google Scholar 

  • Ben-Naim A (2006) On the driving forces for protein-protein association. J Chem Phys 125:024901

    Article  Google Scholar 

  • Chang S-Y, Liu F-F, Dong X-Y, Sun Y (2013) Molecular insight into conformational transmission of human P-glycoprotein. J Chem Phys 139:225102

    Article  Google Scholar 

  • Changeux J-P, Edelstein S (2011) Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep 3:19

    Google Scholar 

  • Chen HL, Gabrilovich D, Tampe R, Girgis KR, Nadaf S, Carbone DP (1996) A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet 13:210–213

    Article  CAS  Google Scholar 

  • Chen J (2013) Molecular mechanism of the Escherichia coli maltose transporter. Curr Opin Struct Biol 23:492–498

    Article  CAS  Google Scholar 

  • Colvin ME, Evleth E, Akacem Y (1995) Quantum chemical studies of pyrophosphate hydrolysis. J Am Chem Soc 117:4357–4362

    Article  CAS  Google Scholar 

  • Cui J, Davidson AL (2011) ABC solute importers in bacteria. Essays Biochem 50:85–99

    Article  CAS  Google Scholar 

  • Düttmann M, Togashi Y, Yanagida T, Mikhailov Alexander S (2012) Myosin-V as a mechanical sensor: an elastic network study. Biophys J 102:542–551

    Article  Google Scholar 

  • Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229

    Article  CAS  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial atp-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  CAS  Google Scholar 

  • Dawson RJP, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  CAS  Google Scholar 

  • Dawson RJP, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938

    Article  CAS  Google Scholar 

  • Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJVA (2017) About P-glycoprotein: a new drugable domain is emerging from structural data. WIREs Comput Mol Sci 7:e1316

    Article  Google Scholar 

  • Ferreira RJ, Ferreira M-JU, dos Santos DJVA (2015) Reversing cancer multidrug resistance: insights into the efflux by ABC transports from in silico studies. WIREs Comput Mol Sci 5:27–55

    Article  CAS  Google Scholar 

  • Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156

    Article  CAS  Google Scholar 

  • Furukawa-Hagiya T, Furuta T, Chiba S, Sohma Y, Sakurai M (2013) The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations. J Phys Chem B 117:83–93

    Article  CAS  Google Scholar 

  • Furukawa-Hagiya T, Yoshida N, Chiba S, Hayashi T, Furuta T, Sohma Y, Sakurai M (2014) Water-mediated forces between the nucleotide binding domains generate the power stroke in an ABC transporter. Chem Phys Lett 616–617:165–170

    Article  Google Scholar 

  • Furuta T, Sato Y, Sakurai M (2016) Structural dynamics of the heterodimeric ABC transporter TM287/288 induced by ATP and substrate binding. Biochemistry 55:6730–6738

    Article  CAS  Google Scholar 

  • Furuta T, Yamaguchi T, Kato H, Sakurai M (2014) Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations. Biochemistry 53:4261–4272

    Article  CAS  Google Scholar 

  • George AM, Jones PM (2012) Perspectives on the structure–function of ABC transporters: the switch and constant contact models. Prog Biophys Mol Biol 109:95–107

    Article  CAS  Google Scholar 

  • George P, Witonsky RJ, Trachtman M, Wu C, Dorwart W, Richman L, Richman W, Shurayh F, Lentz B (1970) “Squiggle-H2O”. An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochim Biophys Acta 223:1–15

    Article  CAS  Google Scholar 

  • Grigorenko BL, Rogov AV, Nemukhin AV (2006) Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters. J Phys Chem B 110:4407–4412

    Article  CAS  Google Scholar 

  • Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929

    Article  CAS  Google Scholar 

  • Harrison CB, Schulten K (2012) Quantum and classical dynamics simulations of ATP hydrolysis in solution. J Chem Theory Comput 8:2328–2335

    Article  CAS  Google Scholar 

  • Hatzakis NS (2014) Single molecule insights on conformational selection and induced fit mechanism. Biophys Chem 186:46–54

    Article  CAS  Google Scholar 

  • Hayashi T, Chiba S, Kaneta Y, Furuta T, Sakurai M (2014) ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force. J Phys Chem B 118:12612–12620

    Article  CAS  Google Scholar 

  • Hayes DM, Kenyon GL, Kollman PA (1978) Theoretical calculations of the hydrolysis energies of some “high-energy” molecules. 2. A survey of some biologically important hydrolytic reactions. J Am Chem Soc 100:4331–4340

    Article  CAS  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926

    Article  CAS  Google Scholar 

  • Hollenstein K, Dawson RJP, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17:412–418

    Article  CAS  Google Scholar 

  • Hsu W-L, Furuta T, Sakurai M (2018) The mechanism of nucleotide-binding domain dimerization in the intact maltose transporter as studied by all-atom molecular dynamics simulations. Proteins 86:237–247

    Article  Google Scholar 

  • Hsu W-L, Furuta T, Sakurai M (2015) Analysis of the free energy landscapes for the opening-closing dynamics of the maltose transporter ATPase MalK2 using enhanced-sampling molecular dynamics simulation. J Phys Chem B 119:9717–9725

    Article  CAS  Google Scholar 

  • Hsu W-L, Furuta T, Sakurai M (2016) ATP hydrolysis mechanism in a maltose transporter explored by QM/MM metadynamics simulation. J Phys Chem B 120:11102–11112

    Article  CAS  Google Scholar 

  • Huang W, Liao J-L (2016) Catalytic mechanism of the maltose transporter hydrolyzing ATP. Biochemistry 55:224–231

    Article  CAS  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969

    Article  CAS  Google Scholar 

  • Kamerlin SCL, Florián J, Warshel A (2008) Associative versus dissociative mechanisms of phosphate monoester hydrolysis: on the interpretation of activation entropies. ChemPhysChem 9:1767–1773

    Article  CAS  Google Scholar 

  • Kiani FA, Fischer S (2016) Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors. Phys Chem Chem Phys 18:20219–20233

    Article  CAS  Google Scholar 

  • Klähn M, Rosta E, Warshel A (2006) On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. J Am Chem Soc 128:15310–15323

    Article  Google Scholar 

  • Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  CAS  Google Scholar 

  • Li CH, Yang YX, Su JG, Liu B, Tan JJ, Zhang XY, Wang CX (2014) Allosteric transitions of the maltose transporter studied by an elastic network model. Biopolymers 101:758–768

    Article  CAS  Google Scholar 

  • Liu H, Li D, Li Y, Hou T (2016) Atomistic molecular dynamics simulations of ATP-binding cassette transporters. WIREs Comput Mol Sci 6:255–265

    Article  CAS  Google Scholar 

  • Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493

    Article  CAS  Google Scholar 

  • Lomovskaya O, Zgurskaya HI, Totrov M, Watkins WJ (2007) Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat Rev Drug Discov 6:56–65

    Article  CAS  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2013) Human P-glycoprotein Contains a greasy ball-and-socket joint at the second transmission interface. J Biol Chem 288:20326–20333

    Article  CAS  Google Scholar 

  • Markwick PRL, McCammon JA (2011) Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Phys Chem Chem Phys 13:20053–20065

    Article  CAS  Google Scholar 

  • McDevitt CA, Crowley E, Hobbs G, Starr KJ, Kerr ID, Callaghan R (2008) Is ATP binding responsible for initiating drug translocation by the multidrug transporter ABCG2? FEBS J 275:4354–4362

    Article  CAS  Google Scholar 

  • Moitra K, Dean M (2011) Evolution of ABC transporters by gene duplication and their role in human disease. Biol Chem 392:29–37

    Article  CAS  Google Scholar 

  • Molinski S, Eckford P, Pasyk S, Ahmadi S, Chin S, Bear C (2012) Functional rescue of F508del-CFTR using small molecule correctors. Front Pharmacol 3

    Google Scholar 

  • Moradi M, Tajkhorshid E (2013) Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci USA 110:18916–18921

    Article  CAS  Google Scholar 

  • Moradi M, Tajkhorshid E (2014) Computational recipe for efficient description of large-scale conformational changes in biomolecular systems. J Chem Theory Comput 10:2866–2880

    Article  CAS  Google Scholar 

  • Mourez M, Hofnung M, Dassa E (1997) Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16:3066–3077

    Article  CAS  Google Scholar 

  • Netlson DL, Cox MC (2005) Lehninger: principles of biochemistry, 4th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Oancea G, O’Mara ML, Bennett WFD, Tieleman DP, Abele R, Tampé R (2009) Structural arrangement of the transmission interface in the antigen ABC transport complex TAP. Proc Natl Acad Sci USA 106:5551–5556

    Article  CAS  Google Scholar 

  • Oldham ML, Chen J (2011) Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332:1202–1205

    Article  CAS  Google Scholar 

  • Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515

    Article  CAS  Google Scholar 

  • Oliveira ASF, Baptista AM, Soares CM (2011) Inter-domain communication mechanisms in an ABC importer: a molecular dynamics study of the MalFGK2E complex. PLoS Comput Biol 7:e1002128

    Article  CAS  Google Scholar 

  • Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond J-L, Locher KP (2015) Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524:433

    Article  CAS  Google Scholar 

  • Prasad BR, Plotnikov NV, Warshel A (2013) Addressing open questions about phosphate hydrolysis pathways by careful free energy mapping. J Phys Chem B 117:153–163

    Article  CAS  Google Scholar 

  • Sakaizawa H, Watanabe HC, Furuta T, Sakurai M (2016) Thermal fluctuations enable rapid protein–protein associations in aqueous solution by lowering the reaction barrier. Chem Phys Lett 643:114–118

    Article  CAS  Google Scholar 

  • Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Targeted molecular dynamics simulation of conformational change-application to the T↔R transition in insulin. Mol Simul 10:291–308

    Article  CAS  Google Scholar 

  • Shilton Brian H (2015) Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems. Biochem J 467:193–199

    Article  CAS  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149

    Article  CAS  Google Scholar 

  • Subramanian N, Condic-Jurkic K, O’Mara ML (2016) Structural and dynamic perspectives on the promiscuous transport activity of P-glycoprotein. Neurochem Int 98:146–152

    Article  CAS  Google Scholar 

  • Szakács G, Váradi A, Özvegy-Laczka C, Sarkadi B (2008) The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov Today 13:379–393

    Article  Google Scholar 

  • Takahashi H, Umino S, Miki Y, Ishizuka R, Maeda S, Morita A, Suzuki M, Matubayasi N (2017) Drastic compensation of electronic and solvation effects on ATP hydrolysis revealed through large-scale QM/MM simulations combined with a theory of solutions. J Phys Chem B 121:2279–2287

    Article  CAS  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  CAS  Google Scholar 

  • Ulucan O, Jaitly T, Helms V (2014) Energetics of hydrophilic protein-protein association and the role of water. J Chem Theory Comput 10:3512–3524

    Article  CAS  Google Scholar 

  • Wang C, Huang W, Liao J-L (2015) QM/MM investigation of ATP hydrolysis in aqueous solution. J Phys Chem B 119:3720–3726

    Article  CAS  Google Scholar 

  • Wang Z, Liao J-L (2015) Probing structural determinants of ATP-binding cassette exporter conformational transition using coarse-grained molecular dynamics. J Phys Chem B 119:1295–1301

    Article  CAS  Google Scholar 

  • Watanabe Y, Hsu W-L, Chiba S, Hayashi T, Furuta T, Sakurai M (2013) Dynamics and structural changes induced by ATP and/or substrate binding in the inward-facing conformation state of P-glycoprotein. Chem Phys Lett 557:145–149

    Article  CAS  Google Scholar 

  • Weng J-W, Fan K-N, Wang W-N (2010) The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations. J Biol Chem 285:3053–3063

    Article  CAS  Google Scholar 

  • Weng J, Gu S, Gao X, Huang X, Wang W (2017) Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2. Phys Chem Chem Phys 19:9366–9373

    Article  CAS  Google Scholar 

  • Xie XL, Li CH, Yang YX, Jin L, Tan JJ, Zhang XY, Su JG, Wang CX (2015) Allosteric transitions of ATP-binding cassette transporter MsbA studied by the adaptive anisotropic network model. Proteins 83:1643–1653

    Article  CAS  Google Scholar 

  • Xu Y, Seelig A, Bernèche S (2017) Unidirectional transport mechanism in an ATP dependent exporter. ACS Cent Sci 3:250–258

    Article  CAS  Google Scholar 

  • Yamamoto T (2010) Preferred dissociative mechanism of phosphate monoester hydrolysis in low dielectric environments. Chem Phys Lett 500:263–266

    Article  CAS  Google Scholar 

  • Yoshida N (2014) Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. J Chem Phys 140:214118

    Article  Google Scholar 

  • Yoshidome T, Kinoshita M, Hirota S, Baden N, Terazima M (2008) Thermodynamics of apoplastocyanin folding: comparison between experimental and theoretical results. J Chem Phys 128:225104

    Article  Google Scholar 

  • Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24:1901–1910

    Article  CAS  Google Scholar 

  • Zhou Y, Ojeda-May P, Pu J (2013) H-loop histidine catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB. Phys Chem Chem Phys 15:15811–15815

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI JP16H00825, JP16K12520, and JP15K00400. We cordially thank Mr. Sho Tanaka for his contribution to the calculated data shown in Tables 12.1 and 12.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furuta, T., Sakurai, M. (2018). Functional Mechanisms of ABC Transporters as Revealed by Molecular Simulations. In: Suzuki, M. (eds) The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery. Springer, Singapore. https://doi.org/10.1007/978-981-10-8459-1_12

Download citation

Publish with us

Policies and ethics