Skip to main content

The Basal Ganglia System as an Engine for Exploration

  • Chapter
  • First Online:

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

One of the earliest attempts at building a theory of the basal ganglia (BG) is based on the clinical findings that lesions to the direct and indirect pathways of the BG produce quite opposite motor manifestations (Albin et al., in Trends Neurosci 12(10):366–375, 1989). While lesions of the direct pathway (DP), affecting particularly the projections from the striatum to GPi, are associated with hypokinetic disorders (distinguished by a paucity of movement), lesions of the indirect pathway (IP) produce hyperkinetic disorders, such as chorea and tremor. In this chapter, we argue that describing the two BG pathways as having mutually opponent actions has limitations. We argue that the BG indirect pathway also plays a role in exploration. We should evidence from various motor learning and decision-making tasks that exploration is a necessary process in various behavioral processes. Importantly, we use the exploration mechanism explained here to simulate various processes of the basal ganglia which we discuss in the following chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.

    Article  Google Scholar 

  • Baunez, C., Humby, T., Eagle, D. M., Ryan, L. J., Dunnett, S. B., & Robbins, T. W. (2001). Effects of STN lesions on simple vs choice reaction time tasks in the rat: Preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 13(8), 1609–1616.

    Article  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. Journal of Neurophysiology, 72(2), 507–520.

    Article  Google Scholar 

  • Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. The Journal of Neuroscience, 21(3), 1033–1038.

    Google Scholar 

  • Brunel, N. (2000). Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. Journal of Computational Neuroscience 8, 183–208.

    Google Scholar 

  • Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253. https://doi.org/10.1007/s00422-010-0401-y.

    Article  MathSciNet  MATH  Google Scholar 

  • Contreras-Vidal, J., & Stelmach, G. E. (1995). Effects of Parkinsonism on motor control. Life Sciences, 58(3), 165–176.

    Article  Google Scholar 

  • Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences, 81(14), 4586–4590.

    Article  Google Scholar 

  • Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.

    Article  Google Scholar 

  • Flores-Hernandez, J., Cepeda, C., Hernandez-Echeagaray, E., Calvert, C. R., Jokel, E. S., Fienberg, A. A., … Levine, M. S. (2002). Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: Role of D1 receptors and DARPP-32. Journal of Neurophysiol, 88(6), 3010–3020.

    Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72. https://doi.org/10.1162/0898929052880093.

    Article  Google Scholar 

  • Gangadhar, G., Joseph, D., & Chakravarthy, V. S. (2008). Understanding Parkinsonian handwriting through a computational model of basal ganglia. Neural Computation, 20(10), 2491–2525.

    Article  Google Scholar 

  • Gillies, A., Willshaw, D., Atherton, J., & Arbuthnott, G. (2002). Functional interactions within the subthalamic nucleus. In The basal ganglia VII (pp. 359–368). Boston: Springer.

    Google Scholar 

  • Grabli, D., McCairn, K., Hirsch, E. C., Agid, Y., Féger, J., François, C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain, 127(9), 2039–2054.

    Article  Google Scholar 

  • Gurney, K., Prescott, T. J., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84(6), 401–410.

    Article  MATH  Google Scholar 

  • Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304–309.

    Article  Google Scholar 

  • Houk, J. C., Davis, J. L., & Beiser, D. G. (1995). Models of information processing in the basal ganglia. Cambridge: The MIT press.

    Google Scholar 

  • Humphries, M., & Gurney, K. (2002). The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems, 13(1), 131–156.

    Article  MATH  Google Scholar 

  • Humphries, M. D., & Prescott, T. J. (2010). The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Progress in Neurobiology, 90(4), 385–417. https://doi.org/10.1016/j.pneurobio.2009.11.003.

    Article  Google Scholar 

  • Hurtado, J. M., Gray, C. M., Tamas, L. B., & Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proceedings of the National Academy of Sciences, 96(4), 1674–1679.

    Article  Google Scholar 

  • Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.

    Article  Google Scholar 

  • Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73. https://doi.org/10.1016/j.neunet.2012.02.031.

    Article  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (Vol. 4). New York: McGraw-Hill.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Kliem, M. A., Maidment, N. T., Ackerson, L. C., Chen, S., Smith, Y., & Wichmann, T. (2007). Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. Journal of Neurophysiology, 98(3), 1489–1500.

    Article  Google Scholar 

  • Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21(16), 159.

    Google Scholar 

  • Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., et al. (2010). Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622–626.

    Article  Google Scholar 

  • Krishnan, R., Ratnadurai, S., Subramanian, D., Chakravarthy, V. S., & Rengaswamy, M. (2011). Modeling the role of basal ganglia in saccade generation: is the indirect pathway the explorer? Neural Networks, 24(8), 801–813. https://doi.org/10.1016/j.neunet.2011.06.002.

    Article  Google Scholar 

  • Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516. https://doi.org/10.1162/NECO_a_00073.

    Article  MATH  Google Scholar 

  • Magill, P., Bolam, J., & Bevan, M. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network. Neuroscience, 106(2), 313–330.

    Article  Google Scholar 

  • Mandali, A., & Chakravarthy, V. S. (2016). Probing the role of medication, DBS electrode position, and antidromic activation on impulsivity using a computational model of basal ganglia. Frontiers in Human Neuroscience, 10, 450.

    Article  Google Scholar 

  • Mandali, A., Rengaswamy, M., Chakravarthy, S., & Moustafa, A. A. (2015). A spiking Basal Ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191.

    Article  Google Scholar 

  • Michmizos, K. P., & Nikita, K. S. (2011). Local field potential driven Izhikevich model predicts a subthalamic nucleus neuron activity. Paper presented at the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.

    Google Scholar 

  • Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936–1947.

    Google Scholar 

  • Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Gilat, M., Lewis, S. J., & Moustafa, A. A. (2017). A neurocomputational model of the effect of cognitive load on freezing of gait in Parkinson’s disease. Frontiers in Human Neuroscience, 10, 649. https://doi.org/10.3389/fnhum.2016.00649.

    Article  Google Scholar 

  • Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2014). A computational model of altered gait patterns in Parkinson’s disease patients negotiating narrow doorways. Frontiers in Computational Neuroscience, 7, 190. https://doi.org/10.3389/fncom.2013.00190.

    Article  Google Scholar 

  • O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454.

    Article  Google Scholar 

  • Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.

    Article  Google Scholar 

  • Pragathi Priyadharsini, B., Ravindran, B., & Srinivasa Chakravarthy, V. (2012). Understanding the role of serotonin in basal ganglia through a unified model. In A. P. Villa, W. Duch, P. Érdi, F. Masulli, & G. Palm (Eds.), Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Berlin: Springer.

    Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89(4), 1009–1023.

    Article  Google Scholar 

  • Rushworth, M. F., & Behrens, T. E. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11(4), 389–397.

    Article  Google Scholar 

  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.

    Article  Google Scholar 

  • Sridharan, D., Prashanth, P. S., & Chakravarthy, V. S. (2006). The role of the basal ganglia in exploration in a neural model based on reinforcement learning. International Journal of Neural Systems, 16(2), 111–124.

    Article  Google Scholar 

  • Stein, P. S., Grillner, S., Selverston, A. I., & Stuart, D. G. (1997). Neurons, networks, and behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Steiner, H., & Tseng, K. Y. (2010). Handbook of basal ganglia structure and function: A decade of progress (Vol. 20). Access Online via Elsevier.

    Google Scholar 

  • Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467. https://doi.org/10.1371/journal.pone.0047467.

    Article  Google Scholar 

  • Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Adaptive computations and machine learning. MIT Press/Bradford.

    Google Scholar 

  • Terman, D., Rubin, J., Yew, A., & Wilson, C. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience, 22(7), 2963–2976.

    Google Scholar 

  • Willshaw, D., & Li, Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269(1491), 545–551.

    Article  Google Scholar 

  • Yoshida, W., & Ishii, S. (2006). Resolution of uncertainty in prefrontal cortex. Neuron, 50(5), 781–789.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Appendix

Appendix

The system of equations for single oscillator is given by,

$$ \frac{{{\text{d}}x}}{{{\text{d}}t}} = - x + v - s + I $$
(i)
$$ v = { \tan }\,{{h}}\left( {\lambda x} \right) $$
(ii)
$$ \frac{{{\text{d}}s}}{{{\text{d}}t}} = - s + v $$
(iii)

Differentiating (i)

$$ \frac{{{\text{d}}^{2} x}}{{{\text{d}}^{2} t}} = - \frac{{{\text{d}}x}}{{{\text{d}}t}} + \lambda \,\sec \,h^{2} \left( {\lambda x} \right)\frac{{{\text{d}}x}}{{{\text{d}}t}} - \frac{{{\text{d}}s}}{{{\text{d}}t}} $$
(iv)

Substituting (ii) and (iii) in (iv)

$$ \frac{{{\text{d}}^{2} x}}{{{\text{d}}^{2} t}} = - \frac{{{\text{d}}x}}{{{\text{d}}t}} + \lambda \,\sec \,h^{2} \left( {\lambda x} \right)\frac{{{\text{d}}x}}{{{\text{d}}t}} - \left( { - s + \tan \,h\left( {\lambda x} \right)} \right) $$
(v)

Substituting (i) and (ii) in (v)

$$ \frac{{{\text{d}}^{2} x}}{{{\text{d}}^{2} t}} = - \frac{{{\text{d}}x}}{{{\text{d}}t}} + \lambda \,\sec \,h^{2} \left( {\lambda x} \right)\frac{{{\text{d}}x}}{{{\text{d}}t}} - \left( {\frac{{{\text{d}}x}}{{{\text{d}}t}} + x - v - I + \tan \,h\left( {\lambda x} \right)} \right) $$

on rearranging

$$ \frac{{{\text{d}}^{2} x}}{{{\text{d}}^{2} t}} + \frac{{{\text{d}}x}}{{{\text{d}}t}}\left( {2 - \lambda \,\sec \,h^{2} \left( {\lambda x} \right)} \right) + \left( {x - I} \right) = 0 $$
(vi)

is similar to Lienard’s equation \( \frac{{{\text{d}}^{2} x}}{{{\text{d}}^{2} t}} + \frac{{{\text{d}}x}}{{{\text{d}}t}}f\left( x \right) + g\left( x \right) = 0 \) where \( f\left( x \right) = 2 - \lambda \,\sec \,h^{2} \left( {\lambda x} \right) \), and \( g(x) = x - I \).

Checking for the Lienard’s conditions, let us assume I = 0.

  1. 1.

    Both \( f(x) \) and \( g(x) \) are continuously differentiable for all \( x \).

  2. 2.

    \( g( - x) = - g(x) \) for all \( x \) (i.e., \( g(x) \) is an odd function).

  3. 3.

    \( g(x) > 0\;{\text{for}}\;x > 0 \).

  4. 4.

    For all \( x \)(i.e., \( f(x) \) is an even function); The odd function \( F(x) = \int\nolimits_{0}^{x} {f(u)du} \) = \( 2x - \tan \,h\left( {\lambda x} \right) \) has exactly one positive zero at \( x = x_{o} \), is negative for \( 0 < x < x_{o} \), is positive and non-decreasing for \( x > x_{o} \), and \( F(x) \to \infty \) as \( x \to \infty \) (one can estimate \( x_{o} \) from graph of \( F(x) \)). So the system has a unique stable limit cycle surrounding the origin in the phase plane.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasa Chakravarthy, V., Balasubramani, P.P. (2018). The Basal Ganglia System as an Engine for Exploration. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics