Skip to main content

Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients

  • Chapter
  • First Online:
  • 915 Accesses

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Precision grip (PG) is the ability to hold an object between forefinger and thumb. Lifting objects in PG require delicate finger grip force (GF) control. Healthy controls modulate GF depending on size, weight, surface curvature, and friction. The difference between the actual GF generated and the minimum GF required to prevent the object from slipping is known as safety margin (SM). Published results suggest that OFF-medicated Parkinson’s disease (PD) patients generated average SM identical to that of controls with increased SM variance. PD patients on medication demonstrated higher average SM with SM variance identical to that of controls. Previously known computational models provide an insight on how the GF is generated and controlled but are unsuitable for modeling the GF in PD patients. In this chapter, we present a Go/Explore/NoGo (GEN) algorithm in a utility-based decision-making framework to explain the SM generated by healthy controls and PD patients both during ON and OFF medication. The study suggests that PD GF is a result of dopamine-level-dependent suboptimal decision-making-based force selection and the suitability of the GEN algorithm to model decision-making tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almecija, S., Moya-Sola, S., & Alba, D. M. (2010). Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE, 5(7), e11727.

    Article  Google Scholar 

  • Boecker, H., Lee, A., Mühlau, M., Ceballos-Baumann, A., Ritzl, A., Spilker, M., et al. (2005). Force level independent representations of predictive grip force–load force coupling: A PET activation study. Neuroimage, 25(1), 243–252.

    Article  Google Scholar 

  • Calvin, W. H. (1982). Did throwing stones shape hominid brain evolution? Ethology and Sociobiology, 3(3), 115–124.

    Article  Google Scholar 

  • Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.

    Article  MathSciNet  MATH  Google Scholar 

  • d’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.

    Article  Google Scholar 

  • Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of neuroscience, 26(8), 2260–2268.

    Article  Google Scholar 

  • Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.

    Article  Google Scholar 

  • de Gruijl, J. R., van der Smagt, P., & De Zeeuw, C. I. (2009). Anticipatory grip force control using a cerebellar model. Neuroscience, 162(3), 777–786.

    Article  Google Scholar 

  • Ehrsson, H. H., Fagergren, A., Johansson, R. S., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90(5), 2978–2986.

    Article  Google Scholar 

  • Fagergren, A., Ekeberg, O., & Forssberg, H. (2000). Precision grip force dynamics: A system identification approach. Biomedical Engineering, IEEE Transactions on, 47(10), 1366–1375.

    Article  Google Scholar 

  • Fagergren, A., Ekeberg, Ö., & Forssberg, H. (2003). Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. Journal of Neurophysiology, 89(6), 2904–2916.

    Article  Google Scholar 

  • Fellows, S. J., & Noth, J. (2004). Grip force abnormalities in de novo Parkinson’s disease. Movement Disorders, 19(5), 560–565.

    Article  Google Scholar 

  • Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.

    Article  Google Scholar 

  • Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659.

    Article  Google Scholar 

  • Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.

    Article  Google Scholar 

  • Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528.

    Google Scholar 

  • Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457.

    Article  Google Scholar 

  • Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104(2), 323–330.

    Article  Google Scholar 

  • Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.

    Article  Google Scholar 

  • Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science, 272(5261), 545–547.

    Article  Google Scholar 

  • Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., & Westling, G. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research, 90(2), 399–403.

    Article  Google Scholar 

  • Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482.

    Google Scholar 

  • Gordon, A. M., Quinn, L., Reilmann, R., & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington’s disease. Experimental Neurology, 163(1), 136–148.

    Article  Google Scholar 

  • Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S. & Chakravarthy, V. S. (2013a). Biologically inspired closed-loop model of precision grip lifting task. Advances in cognitive neurodynamics (III) (543–550) Dordrecht: Springer.

    Google Scholar 

  • Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S., et al. (2013b). Human precision grip performance under variable skin friction conditions: A modelling and experimental study. International Journal of Mind, Brain and Cognition. B. Publications. New Delhi, 4, 7–45.

    Google Scholar 

  • Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013c). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7, 172.

    Article  Google Scholar 

  • Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2 Pt 1), 489–501.

    Article  Google Scholar 

  • Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79(4), 1643–1652.

    Article  Google Scholar 

  • Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.

    Article  Google Scholar 

  • Johansson, R. S., & Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511–524.

    Article  Google Scholar 

  • Johansson, R. S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Experimental Brain Research, 89(1), 181–191.

    Article  Google Scholar 

  • Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564.

    Article  Google Scholar 

  • Johansson, R. S., & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71.

    Google Scholar 

  • Johansson, R. S., & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 72–86.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.

    Article  MATH  Google Scholar 

  • Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.

    Article  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science, New York: McGraw-Hill.

    Google Scholar 

  • Kim, I., & Inooka, H. (1994). Determination of grasp forces for robot hands based on human capabilities. Control Engineering Practice, 2(3), 415–420.

    Article  Google Scholar 

  • Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.

    Article  Google Scholar 

  • Kinoshita, H., Oku, N., Hashikawa, K., & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: A PET study. Brain Research, 857(1), 119–130.

    Article  Google Scholar 

  • Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. Journal of Experimental Social Psychology, 47(3), 689–693.

    Article  Google Scholar 

  • Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.

    Article  Google Scholar 

  • Lemon, R. N., Johansson, R., & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. The Journal of Neuroscience, 15(9), 6145–6156.

    Google Scholar 

  • Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.

    Article  MATH  Google Scholar 

  • Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N. F., Gerwig, M., et al. (2012). Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.

    Article  Google Scholar 

  • Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., et al. (2016a). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences, 27(5), 535–548.

    Article  Google Scholar 

  • Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., et al. (2016b). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobehavioral Reviews, 68, 727–740.

    Article  Google Scholar 

  • Muir, R., & Lemon, R. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316.

    Article  Google Scholar 

  • Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg Br, 38-B(4), 902–913.

    Article  Google Scholar 

  • Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817.

    Article  Google Scholar 

  • Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 127(1), 182–192.

    Article  Google Scholar 

  • Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25.

    Article  Google Scholar 

  • Panger, M. A., Brooks, A. S., Richmond, B. G., & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.

    Article  Google Scholar 

  • Pope, P., Wing, A. M., Praamstra, P., & Miall, R. C. (2005). Force related activations in rhythmic sequence production. Neuroimage, 27(4), 909–918.

    Article  Google Scholar 

  • Priyadharsini, B. P., Ravindran, B., & Chakravarthy, V. S. (2012). In: A. P. Villa, W. Duch, P. Érdi, F. Masulli & G. Palm (Eds.), Understanding the role of serotonin in basal ganglia through a unified model. Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Springer Berlin Heidelberg.

    Google Scholar 

  • Prodoehl, J., Yu, H., Wasson, P., Corcos, D. M., & Vaillancourt, D. E. (2008). Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. Journal of Neurophysiology, 99(6), 3042–3051.

    Article  Google Scholar 

  • Saels, P., Thonnard, J. L., Detrembleur, C., & Smith, A. M. (1999). Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia, 37(6), 751–756.

    Article  Google Scholar 

  • Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509.

    Article  Google Scholar 

  • Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.

    Article  Google Scholar 

  • Spraker, M. B., Yu, H., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. Journal of Neurophysiology, 98(2), 821–834.

    Article  Google Scholar 

  • Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology, 39(5), 1020–1031.

    Article  Google Scholar 

  • Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.

    Article  Google Scholar 

  • Ulloa, A., Bullock, D., & Rhodes, B. J. (2003). Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Networks, 16(5–6), 521–528.

    Article  Google Scholar 

  • Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R., & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23(1), 175–186.

    Article  Google Scholar 

  • Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36(3), 793–803.

    Article  Google Scholar 

  • Van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719–741.

    Article  Google Scholar 

  • Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.

    Article  Google Scholar 

  • Wasson, P., Prodoehl, J., Yu, H., Corcos, D., & Vaillancourt, D. (2007). Prediction and the basal ganglia. San Diego: Society for Neuroscience.

    Google Scholar 

  • Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284.

    Article  Google Scholar 

  • Witney, A. G., Wing, A., Thonnard, J.-L., & Smith, A. M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 27(10), 637–643.

    Article  Google Scholar 

  • Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.

    Article  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.

    Article  Google Scholar 

  • Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996–1003.

    Article  Google Scholar 

  • Wu, S. W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci U S A, 106(15), 6088–6093.

    Article  Google Scholar 

  • Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.

    Article  Google Scholar 

  • Zhang, H., Maddula, S. V., & Maloney, L. T. (2010). Planning routes across economic terrains: Maximizing utility, following heuristics. Front Psychol, 1, 214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Srinivasa Chakravarthy, V. (2018). Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics