Skip to main content

Chlorine Decay Modelling in Water Distribution System Case Study: CEERI Network

  • Conference paper
  • First Online:
Smart and Innovative Trends in Next Generation Computing Technologies (NGCT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 827))

Included in the following conference series:

  • 1390 Accesses

Abstract

In this research paper EPANET and EPANET-MSX software tool is utilized to simulate the water network of CSIR-CEERI, Pilani. System is utilizing a real time contamination event detection algorithm, for detecting a randomly generated event using EPANET-MATLAB Toolkit. According to WHO (World Health Organisation) the required chlorine concentration for maintaining water quality is 0.5 mg/l. So re-chlorination stations are expected to include into network. A fixed detection threshold for chlorine residual is utilized for different sensing areas when chlorine concentration varies from this limit, controller module will adjust the value according to required level. Initial Chlorine, pipe roughness, demand pattern and others parameters of the underlying states of the water supply framework were created by Monte Carlo simulation method. This information of chlorine data is sent over a IOT integrated server. At that point this information is displayed over a user interactive application with the goal that a client intuitive view can be provided. The utilization of the Monte Carlo simulation in blend with heuristic classification have been turned out to be a capable tool to perform chlorine residuals finding and contamination event occurrence in sensors inside the CEERI pressure zone. By utilizing classification module’s output the event detection of contamination is done by raising a alert flag. Finally, this information about generated alerts are sent to the user, who is authorised to access and perform possible actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byer, D., Carlson, K.H.: Expanded summary: real-time detection of intentional chemical contamination in the distribution system. J. (Am. Water Works Assoc.) 97(7), 130–133 (2005)

    Article  Google Scholar 

  2. Eliades, D.G., Polycarpou, M.M.: Contaminant detection in urban water distribution networks using chlorine measurements. In: Hämmerli, B.M., Kalstad Svendsen, N., Lopez, J. (eds.) CRITIS 2012. LNCS, vol. 7722, pp. 203–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41485-5_18

    Chapter  Google Scholar 

  3. Eliades, D.G., Lambrou, T.P., Panayiotou, C.G., Polycarpou, M.M.: Contamination event detection in water distribution systems using a model-based approach. Procedia Eng. 89, 1089–1096 (2014)

    Article  Google Scholar 

  4. Gullick, R.W., LeChevallier, M.W., Svindland, R.C., Friedman, M.J., et al.: Occurrence of transient low and negative pressures in distribution systems. J.-Am. Water Works Assoc. 96(11), 52–66 (2004)

    Article  Google Scholar 

  5. Helbling, D.E., VanBriesen, J.M.: Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems. J. Environ. Eng. 135(10), 918–927 (2009)

    Article  Google Scholar 

  6. Jegatheesan, V., Kastl, G., Fisher, I., Angles, M., Chandy, J.: Modelling biofilm growth and disinfectant decay in drinking water. Water Sci. Technol. 41(4–5), 339–345 (2000)

    Article  Google Scholar 

  7. Jonkergouw, P.M.R., Khu, S.T., Savic, D.: Chlorine: a possible indicator of intentional chemical and biological contamination in a water distribution network. In: Proceedings of IWA Conference on Automation in Water Quality Monitoring (2004)

    Google Scholar 

  8. Kirmeyer, G.J., Friedman, M., Martel, K.D., Noran, P.F., Smith, D., et al.: Practical guidelines for maintaining distribution system water quality. J.-Am. Water Works Assoc. 93(7), 62–73 (2001)

    Article  Google Scholar 

  9. Liu, Y., Hou, D., Huang, P., Zhang, G.: Multiscale water quality contamination events detection based on sensitive time scales reconstruction. In: 2013 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 235–240. IEEE (2013)

    Google Scholar 

  10. Monteiro, L., Figueiredo, D., Dias, S., Freitas, R., Covas, D., Menaia, J., Coelho, S.T.: Modeling of chlorine decay in drinking water supply systems using epanet MSX. Procedia Eng. 70, 1192–1200 (2014)

    Article  Google Scholar 

  11. Murray, R., Haxton, T., McKenna, S.A., Hart, D.B., Klise, K., Koch, M., Vugrin, E.D., Martin, S., Wilson, M., Cruze, V.A., et al.: Water quality event detection systems for drinking water contamination warning systems: development testing and application of canary. EPAI600IR-lOI036, US (2010)

    Google Scholar 

  12. Murray, S., Ghazali, M., McBean, E.A.: Real-time water quality monitoring: assessment of multisensor data using Bayesian belief networks. J. Water Resour. Plann. Manag. 138(1), 63–70 (2011)

    Article  Google Scholar 

  13. Oliker, N., Ostfeld, A.: Minimum volume ellipsoid classification model for contamination event detection in water distribution systems. Environ. Model Softw. 57, 1–12 (2014)

    Article  Google Scholar 

  14. Pasha, M.F.K., Lansey, K.: Effect of parameter uncertainty on water quality predictions in distribution systems-case study. J. Hydroinformatics 12(1), 1–21 (2010)

    Article  Google Scholar 

  15. Perelman, L., Arad, J., Housh, M., Ostfeld, A.: Event detection in water distribution systems from multivariate water quality time series. Environ. Sci. Technol. 46(15), 8212–8219 (2012)

    Article  Google Scholar 

  16. Shang, F., Uber, J.G., Rossman, L.A., et al.: EPANET multi-species extension user’s manual. Risk Reduction Engineering Laboratory, US Environmental Protection Agency, Cincinnati, Ohio (2008)

    Google Scholar 

  17. Vasconcelos, J.J., Rossman, L.A., Grayman, W.M., Boulos, P.F., Clark, R.M., et al.: Kinetics of chlorine decay. J.-Am. Water Works Assoc. 89(7), 54–65 (1997)

    Article  Google Scholar 

  18. Yang, J.Y., Haught, R.C., Goodrich, J.A.: Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results. J. Environ. Manag. 90(8), 2494–2506 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahak Vijay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vijay, M., Porwal, S., Jain, S.C., Botre, B.A. (2018). Chlorine Decay Modelling in Water Distribution System Case Study: CEERI Network. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 827. Springer, Singapore. https://doi.org/10.1007/978-981-10-8657-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8657-1_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8656-4

  • Online ISBN: 978-981-10-8657-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics