Skip to main content

Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches

  • Chapter
  • First Online:
Emerging and Eco-Friendly Approaches for Waste Management

Abstract

Textile industry is one of the major industries in the world that play a major role in the economy of many countries. Wastewater discharges from textile industries are highly colored which contains various polluting substances including synthetic dyes, chemicals, etc., causing severe health hazards to humans, animals, plants, as well as microorganisms. This highly colored textile wastewater severely affects photosynthetic function in plant as well as aquatic life by eutrophication. So, this textile wastewater must be treated before their discharge. In this chapter, different treatment methods to treat the textile wastewater have been presented such as physical methods (adsorption, ion exchange, and membrane filtration), chemical methods (chemical precipitation, coagulation and flocculation, chemical oxidation), and biological methods (aerobic and anaerobic). This chapter also recommends the possible eco-friendly approaches for treating diverse types of effluent generated from textile operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Halim ES, Al-Deyab SS (2013) One-step bleaching process for cotton fabrics using activated hydrogen peroxide. Carbohydr Polym 92:1844–1849

    Article  CAS  Google Scholar 

  • Aguilar MI, Saez J, Llorens M, Soler A, Ortuno JF, Meseguer V, Fuente A (2005) Improvement of coagulationflocculation process using anionic polyacryl amide as coagulant aid. Chemosphere 58:47–56

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010a) Kinetic and thermodynamic studies of brilliant green adsorption ontoactivated carbon/iron oxide nanocomposite. J Korean Chem Soc 54(1):125–130

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010b) Conducting polyaniline/iron oxide composite: a novel adsorbent for the removal of amido black 10 B. J Chem Eng Data 55(9):3489–3493

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010c) Adsorptive removal of congo red dye from aqueous solution using bale shell carbon. Appl Surf Sci 257(5):1628–1633

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2011) Adsorption of amaranth dyes onto alumina reinforced polystyrene. Clean Soil Air Water 39(1):74–82

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2009) Application of acid treated almond peel for removal and recovery of brilliant green from industrial wastewater by column operation. Sep Sci Technol 44(7):1638–1655

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2010) Application of modified water nut carbon as a sorbent in congo red and malachite green dye contaminated wastewater remediation. Sep Sci Technol 45:394–403

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2012a) Adsorption and photodegradation of methylene blue by using PAni/TiO2 nanocomposite. J Dispers Sci Technol 33(3):380–386

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2012b) Bioremediation of p-nitrophenol containing wastewater by aerobic granule. J Environ Eng Manag 13(3):493–498

    Article  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes – a review. Water Air Soil Pollut 213(1–4):251–273

    Article  CAS  Google Scholar 

  • APHA (2012) American Public Health Association, 20th edn. Washington, DC/New York

    Google Scholar 

  • Arya D, Kohli P (2009) Environmental impact of textile wet processing, India. Dyes and Chemicals

    Google Scholar 

  • Asgher M, Azim N, Bhatti HN (2009) Decolorization of practical textile industry effluents by white rot fungus Coriolus versicolor IBL-04. Biochem Eng J 47:61–65

    Article  CAS  Google Scholar 

  • Barbera AC, Cirelli GL, Cavallaro V, Di Silvestro I, Pacifici P, Castiglione V, Toscano A, Milani M (2009) Growth and biomass production of different plant species in two different constructed wetland systems in Sicily. Desalination 246:129–136

    Article  CAS  Google Scholar 

  • Bechtold T, Burtscher E, Hung YT (2006) In: Wang LK, Hung YT, Lo HH, Yapijakis C (eds) Treatment of textile wastes, in waste treatment in the process industries. CRC Press, Boca Raton, pp 363–392

    Google Scholar 

  • Bharagava RN, Mishra S (2017) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  • Bizuneh A (2012) Textile effluent treatment & decolorization techniques. Chem Bulg J Sci Educ 21:434–456

    Google Scholar 

  • Blaise C, Sergey G, Wells P, Bermingham N, van Coillie N (1988) Biological testing-development, application and trends in Canadian environmental protection laboratories. J Toxicol Assess 3:385–406

    Article  Google Scholar 

  • Borin M, Tocchetto D (2007) Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters. Sci Total Environ 380(1):38–47

    Article  CAS  Google Scholar 

  • Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29(4):71–78

    Article  CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17

    Article  CAS  Google Scholar 

  • Bulc TG (2006) Long term performance of a constructed wetland for landfill leachate treatment. Ecol Eng 26:365–374

    Article  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012a) Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: central composite design for optimization of process variables. J Water Reuse Desal 2:55–65

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012b) Fish (Labeo rohita) scales as a new biosorbent for removal of textile dyes from aqueous solutions. J Water Reuse Desal 2:175–184

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012c) Batch removal of crystal violet from aqueous solution by H2SO4 modified sugarcane bagasse: equilibrium, kinetic, and thermodynamic profile. Sep Sci Technol 47:1898–1905

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012d) Biosorption of hazardous textile dyes from aqueous solutions by hen feathers: batch and column studies. Korean J Chem Eng 29:1567–1576

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2013) Artificial neural network (ANN) modelling of dynamic adsorption of crystal violet from aqueous solution using citric-acid modified rice (Oryza sativa) straw as adsorbent. Clean Techn Environ Policy 15:255–264

    Article  CAS  Google Scholar 

  • Chen KC, Jane YW, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Article  CAS  Google Scholar 

  • Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017a) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham, pp 409–435

    Chapter  Google Scholar 

  • Chowdhary P, More N, Raj A, Bharagava RN (2017b) Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int 5(3):30–36

    Article  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013a) Removal of crystal violet from aqueous solution by adsorption onto eggshells: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Waste Biomass Valorization 4:655–664

    Article  CAS  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013b) Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: equilibrium, kinetics, and thermodynamics. Sep Sci Technol 48:1348–1399

    Article  CAS  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013c) Response surface optimization of a dynamic dye adsorption process: a case study of crystal violet adsorption onto NaOH-modified rice husk. Environ Sci Pollut Res 20:1698–1705

    Article  CAS  Google Scholar 

  • Ding S, Li Z, Wangrui (2010) Overview of dyeing wastewater treatment technology. Water Resour Prot 26:73–78

    CAS  Google Scholar 

  • EPA (2000) Bio-solids technology fact sheet: in-vessel composting of biosolids. United States Environmental Protection Agency

    Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  • Fu S, Hinks D, Hauser P, Ankeny M (2013) High efficiency ultra-deep dyeing of cotton via mercerization and cationization. Cellulose 20:3101–3110

    Article  CAS  Google Scholar 

  • Gawande MB, Bonifacio VDB, Luque R, Branco PS, Varma RS (2014) Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem 7:24–44

    Article  CAS  Google Scholar 

  • Ghaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5(1):1–19

    Google Scholar 

  • Gogate PR, Pandit AB (2004) Reviews of imperative technologies for wastewater treatment. I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  • Golob V, Ojstrsek A (2005) Removal of vat and disperse dyes from residual pad liquors. Dyes Pigments 64:57–61

    Article  CAS  Google Scholar 

  • Gosavi VD, Sharma S (2014) A general review on various treatment methods for textile wastewater. J Environ Sci Comput Sci Eng Technol 3:29–39

    Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Salah Uddin M (2007) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19

    Article  CAS  Google Scholar 

  • Gupta V, Suhas K (2009) Application of low cost adsorbents for dye removal-a review. J Environ Manag 90(8):2313–2342

    Article  CAS  Google Scholar 

  • Hameed BH, Ahmad AA, Aziz N (2007) Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133(1–3):195–203

    Article  CAS  Google Scholar 

  • Ince NH, Ziylan A (2015) Single and hybrid applications of ultrasound for decolorization and degradation of textile dye residuals in water. In: Sharma SK (ed) Green chemistry for dyes removal from waste water. Wiley, Hoboken, pp 261–263

    Chapter  Google Scholar 

  • Jadhav AJ, Srivastava VC (2013) Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. Chem Eng J 229:450–459

    Article  CAS  Google Scholar 

  • Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4(1):22–26

    CAS  Google Scholar 

  • Karcher S, Kornmuller A, Jekel M (2001) Screening of commercial sorbents for the removal of reactive dyes. Dyes Pigments 5:111–125

    Article  Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2012) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12(1):75–97

    Article  CAS  Google Scholar 

  • Koyuncu I (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinyl sulphone dye: effects of feed concentration and cross flow velocity. Desalination 143:243–253

    Article  CAS  Google Scholar 

  • Kumar R, Ahmad R (2010) Adsorption studies of hazardous malachite green onto treated ginger waste. J Environ Manag 91(4):1032–1038

    Article  CAS  Google Scholar 

  • Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus Cereus. J Environ Manag 183:204–211

    Article  CAS  Google Scholar 

  • Kurbus T, Majcen Le Marechal A, BrodnjakVoncina D (2003) Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorization of vinyl sulphone reactive dyes. Dyes Pigments 58:245–252

    Article  CAS  Google Scholar 

  • Lee SY, Maniquiz MC, Choi JY, Jeong SM, Kim LH (2013) Seasonal nutrient uptake of plant biomass in a constructed wetland treating piggery wastewater effluent. Water Sci Technol 67(6):1317–1323

    Article  CAS  Google Scholar 

  • Lee G, Zhang Y, Shao S (2014) International conference on environment systems science and engineering (ESSE 2014) study on recycling alkali from the wastewater of textile mercerization process by nanofiltration. IERI Procedia 9:71–76

    Article  Google Scholar 

  • Liang T, Wang L (2015) An environmentally safe and nondestructive process for bleaching birch veneer with peracetic acid. J Clean Prod 92:37–43

    Article  CAS  Google Scholar 

  • Lin SH, Lin CM (1993) Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res 27:1743–1748

    Article  CAS  Google Scholar 

  • Magdum SS, Minde GP, Kalyanraman V (2013) Rapid determination of indirect cod and polyvinyl alcohol from textile desizing wastewater. Pollut Res 32:515–519

    CAS  Google Scholar 

  • Mander U, Kuusemets V, Lohmus K, Mauring T, Teiter S, Augustin J (2003) Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Sci Technol 48(5):135–142

    Article  CAS  Google Scholar 

  • Mani S, Bharagava RN (2016) Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environmental and its degradation and detoxification for environmental safety. Rev of Environ Conta And Toxicol 237:71–104

    CAS  Google Scholar 

  • Mani S, Bharagava RN (2017) Isolation, screening and biochemical characterization of bacteria capable of crystal violet dye Decolorization. Int J Appl Adv Sci Res 2(2):70–75

    Google Scholar 

  • Mathur N, Bhatnagar P, Bakre P (2005) Assessing Mutagenicity of Textile Dyes from Pali (Rajasthan) using AMES Bioassay. Environmental Toxicology Unit, Department of Zoology, University of Rajasthan, Jaipur, India

    Google Scholar 

  • Maucieri C, Mietto A, Barbera AC, Borin M (2016) Treatment performance and greenhouse gas emission of a pilot hybrid constructed wetland system treating digestate liquid fraction. Ecol Eng 94:406–417

    Article  Google Scholar 

  • Mbuligwe SE (2005) Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants. Water Res 39:271–280

    Article  CAS  Google Scholar 

  • Miralles-Cuevas S, Oller I, Agüera A (2016) Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: acute and chronic toxicity assessment. J Hazard Mater 323:442–451

    Article  CAS  Google Scholar 

  • Mishra A, Bajpai M (2005) Flocculation behavior of model textile wastewater treated with a food grade polysaccharide. J Hazard Mater 118:213–217

    Article  CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C 34(1):1–34

    Article  CAS  Google Scholar 

  • Moir SE, Svoboda I, Sym G, Clark J, McGechan MB, Castle K (2005) An experimental plant for testing methods of treating dilute farm effluents and dirty water. Biosyst Eng 90(3):349–355

    Article  Google Scholar 

  • Nivala J, Wallace S, Headley T, Kassa K, Brix H, van Afferden M, Müller R (2013) Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol Eng 61:544–554

    Article  Google Scholar 

  • O’Geen AT, Budd R, Gan J, Maynard JJ, Parikh SJ, Dahlgren RA (2010) Chapter one-mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Adv Agron 108:1–76

    Article  CAS  Google Scholar 

  • Ojstrsek A, Fakin D, Vrhovsek D (2007) Residual dye bath purification using a system of constructed wetland. Dyes Pigments 74:503–507

    Article  CAS  Google Scholar 

  • Pagga U, Brown D (1986) The degradability of dyestuffs: part II behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15:479–491

    Article  CAS  Google Scholar 

  • Pappalardo SE, Otto S, Gasparini V, Zanin G, Borin M (2016) Mitigation of herbicide runoff as an ecosystem service from a constructed surface flow wetland. Hydrobiologia 774(1):193–202

    Article  CAS  Google Scholar 

  • Paul SA, Chavan SK, Khambe SD (2012) Studies on characterization of textile industrial waste water in solapur city. Int J Chem Sci 10:635–642

    CAS  Google Scholar 

  • Ramesh Babu B, Parande AK, Raghu S, Prem Kumar T (2007) Textile technology-cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    Google Scholar 

  • Ratthore JS, Choudhary V, Sharma S (2014) Implications of textile dyeing and printing effluents on groundwater quality for irrigation purpose pali. Rajasthan Eur Chem Bull 3:805–808

    CAS  Google Scholar 

  • Rott U, Minke R (1999) Overview of wastewater treatment and recycling in the textile processing industry. Wat Sci Technol 40(1):137–144

    Article  CAS  Google Scholar 

  • Saha PD, Chakraborty S, Chowdhury S (2012) Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids Surf B: Biointerfaces 92:262–270

    Article  CAS  Google Scholar 

  • Salvato M, Borin M (2010) Effect of different macrophytes in abating nitrogen from a synthetic wastewater. Ecol Eng 36(10):1222–1231

    Article  Google Scholar 

  • Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater a review. Appl Biochem Biotechnol 167:645–661

    Article  CAS  Google Scholar 

  • Scholz M, Xu J (2002) Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Bioresour Technol 83:71–79

    Article  CAS  Google Scholar 

  • Schowanck D, Fox K, Holt M (2001) GREATER: a new tool for management and risk assessment of chemicals in river basins. Contribution to GREATER. Wat Sci Technol 43:179–185

    Google Scholar 

  • Sen S, Demirer GN (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37:1868–1878

    Article  CAS  Google Scholar 

  • Solano ML, Soriano P, Ciria MP (2004) Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosyst Eng 87(1):109–118

    Article  Google Scholar 

  • Sponza DT, Isik M (2006) Anaerobic/aerobic sequential treatment of a cotton textile mill wastewater. J Chem Technol Biotechnol 79(11):1268–1274

    Google Scholar 

  • Sujata, Bharagava RN (2016) Microbial degradation and decolorization of dyes from textile industry eastewater. Bioremediation Ind Pollutants: 53–90

    Google Scholar 

  • USEPA (1988) Methods for aquatic toxicity identification evaluations- Phase I. Toxicity characterization procedures. U.S. Environmental Protection Agency, Environmental Research Laboratory, National Effluent Toxicity Assessment Center, Duluth

    Google Scholar 

  • VanderZaag AC, Gordon RJ, Burton DL, Jamieson RC, Stratton GW (2008) Ammonia emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater. J Environ Qual 37(6):2028–2036

    Article  CAS  Google Scholar 

  • Verlicchi P, Zambello E (2014) How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ 470:1281–1306

    Article  CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1):48–65

    Article  CAS  Google Scholar 

  • Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35(1):1–17

    Article  Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549

    Article  CAS  Google Scholar 

  • Vymazal J (2016) Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ 544:495–498

    Article  CAS  Google Scholar 

  • Vymazal J, Kropfelova L (2008) Is concentration of dissolved oxygen a good indicator of processes in filtration beds of horizontal-flow constructed wetlands? Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Dordrecht, pp 311–317

    Chapter  Google Scholar 

  • Vymazal J, Greenway M, Tonderski K, Brix H, Mander U (2006) Constructed wetlands for wastewater treatment. Wetlands and natural resource management. Springer, Berlin, pp 69–96

    Chapter  Google Scholar 

  • Wang YH, Inamori R, Kong HN, Xu KQ, Inamori Y, Kondo T, Zhang JX (2008a) Nitrous oxide emission from polyculture constructed wetlands: effect of plant species. Environ Pollut 152(2):351–360

    Article  CAS  Google Scholar 

  • Wang YH, Inamori R, Kong HN, Xu KQ, Inamori Y, Kondo T, Zhang JX (2008b) Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations. Ecol Eng 32:22–29

    Article  Google Scholar 

  • Waring DR, Hallas G (2013) The chemistry and application of dyes. Springer

    Google Scholar 

  • Wu S, Kuschk P, Brix H, Vymazal J, Dong R (2014) Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res 57:40–55

    Article  CAS  Google Scholar 

  • Zainith S, Sandhya S, Saxena G, Bharagava RN (2016) Microbes an ecofriendly tools for the treatment of industrial waste waters. Microbes Environ Manag 1:78–103

    Google Scholar 

  • Zhao YJ, Cheng P, Pei X, Zhang H, Yan C, Wang SB (2013) Performance of hybrid vertical up-and downflow subsurface flow constructed wetlands in treating synthetic high-strength wastewater. Environ Sci Pollut Res 20(7):4886–4894

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are highly grateful to the Rajiv Gandhi National fellowship, UGC, New Delhi, India, for providing the financial support to Ms. Sujata and Mr. Pankaj Chowdhary for this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mani, S., Chowdhary, P., Bharagava, R.N. (2019). Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_11

Download citation

Publish with us

Policies and ethics