Skip to main content

A Generative Adversarial Network for Tone Mapping HDR Images

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

A tone mapping operator converts High Dynamic Range (HDR) images to Low Dynamic Range (LDR) images, which can be seen on LDR displays. There has been a lot of research done in the direction of an optimal Tone Mapping Operator which maximizes Tone Mapping Quality Index (TMQI). However, since all the methods approximate Human Vision System in one or different way, none of them works for every type of images. We are proposing a novel generative adversarial network to learn a combination of these tone mapping operators. In order to get pixel level accuracy, we are using residual connections between same sized network layers. We compare this method with some of the existing tone mapping operators and observe that our method generates images with comparably high TMQI and indeed works on many different types of images. Because of the residual connections, the network can be scaled to very high dimensional images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshida, A., et al.: Perceptual evaluation of tone mapping operators with realworld scenes. Proc. SPIE 5666, 192–203 (2005)

    Article  Google Scholar 

  2. Drago, F., et al.: Perceptual evaluation of tone mapping operators with regard to similarity and preference. Max-Planck-Institut für Informatik (2002)

    Google Scholar 

  3. Yeganeh, H., Wang, Z.: Objective quality assessment of tonemapped images. IEEE Trans. Image Process 22(2), 657–667 (2013)

    Article  MathSciNet  Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  9. Zeiler, M.D., et al.: Deconvolutional networks. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2528–2535. IEEE (2010)

    Google Scholar 

  10. Drago, F., et al.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Computer Graphics Forum, vol. 22, no. 3, pp. 419–426. Wiley Online Library (2003)

    Article  Google Scholar 

  11. Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Graph 11(1), 13–24 (2005)

    Article  Google Scholar 

  12. Kuang, J., Johnson, G.M., Fairchild, M.D.: iCAM06: a refined image appearance model for HDR image rendering. J. Visual Commun. Image Represent. 18(5), 406–414 (2007)

    Article  Google Scholar 

  13. Chiu, K., et al.: Spatially nonuniform scaling functions for high contrast images. In: Graphics Interface, pp. 245–245. Canadian Information Processing Society (1993)

    Google Scholar 

  14. Schlick, C.: Quantization techniques for visualization of high dynamic range pictures. In: Sakas, G., Müller, S., Shirley, P. (eds.) Photorealistic Rendering Techniques, pp. 7–20. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-87825-1_2

    Chapter  Google Scholar 

  15. Tumblin, J., Turk, G.: LCIS: a boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 83–90. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  16. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 249–256. ACM (2002)

    Google Scholar 

  17. Kautz, M.H.K.J.: Consistent tone reproduction (2008)

    Google Scholar 

  18. Banterle, F., et al.: Multidimensional image retargeting. In: SIGGRAPH Asia 2011 Courses, p. 15. ACM (2011)

    Google Scholar 

  19. Sheth, K.: Deep neural networks for HDR imaging. arXiv preprint arXiv:1611.00591 (2016)

  20. Banterle, F., et al.: Advanced High Dynamic Range Imaging: Theory and Practice. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Maharshi Vyas for helping with python scripts and NVIDIA for TitanX GPU card grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Amit Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, V.A., Shah, P., Raman, S. (2018). A Generative Adversarial Network for Tone Mapping HDR Images. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics