Skip to main content

An EEG-Based Image Annotation System

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

The success of deep learning in computer vision has greatly increased the need for annotated image datasets. We propose an EEG (Electroencephalogram)-based image annotation system. While humans can recognize objects in 20–200 ms, the need to manually label images results in a low annotation throughput. Our system employs brain signals captured via a consumer EEG device to achieve an annotation rate of up to 10 images per second. We exploit the P300 event-related potential (ERP) signature to identify target images during a rapid serial visual presentation (RSVP) task. We further perform unsupervised outlier removal to achieve an F1-score of 0.88 on the test set. The proposed system does not depend on category-specific EEG signatures enabling the annotation of any new image category without any model pre-training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, S., Huang, J., Huang, Y., Yu, Y., Li, H., Metaxas, D.N.: Automatic image annotation using group sparsity. In: CVPR (2010)

    Google Scholar 

  2. Verma, Y., Jawahar, C.V.: Image annotation using metric learning in semantic neighbourhoods. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 836–849. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_60

    Chapter  Google Scholar 

  3. Yashaswi, V., Jawahar, C.: Exploring SVM for image annotation in presence of confusing labels. In: BMVC (2013)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Fu, H., Zhang, Q., Qiu, G.: Random forest for image annotation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 86–99. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_7

    Chapter  Google Scholar 

  6. Wang, M., Hua, X.-S.: Active learning in multimedia annotation and retrieval: a survey. In: TIST 2011

    Article  Google Scholar 

  7. Sychay, G., Chang, E., Goh, K.: Effective image annotation via active learning. In: IEEE International Conference on Multimedia and Expo Proceedings, vol. 1, pp. 209–212 (2002)

    Google Scholar 

  8. Bakliwal, P., Jawahar, C.: Active learning based image annotation. In: NCVPRIPG. IEEE (2015)

    Google Scholar 

  9. Katti, H., Subramanian, R., Kankanhalli, M., Sebe, N., Chua, T.-S., Ramakrishnan, K.R.: Making computers look the way we look: exploiting visual attention for image understanding. In: ACM International Conference on Multimedia, pp. 667–670 (2010)

    Google Scholar 

  10. Subramanian, R., Shankar, D., Sebe, N., Melcher, D.: Emotion modulates eye movement patterns and subsequent memory for the gist and details of movie scenes. J. Vis. 14(3), 1–18 (2014)

    Article  Google Scholar 

  11. Oliva, A.: Gist of the scene. Neurobiol. Attention 696, 251–256 (2005)

    Article  Google Scholar 

  12. Keysers, C., Xiao, D., Foldiak, P., Perrett, D.: The speed of sight. J. Cogn. Neurosci. 13, 90–101 (2001)

    Article  Google Scholar 

  13. Linden, D.E.: The P300: where in the brain is it produced and what does it tell us? Neuroscientist 11(6), 563–576 (2005)

    Article  Google Scholar 

  14. Mohedano, E., Healy, G., McGuinness, K., Giró-i Nieto, X., OConnor, N.E., Smeaton, A.F.: Improving object segmentation by using EEG signals and rapid serial visual presentation. Multimedia Tools Appl. 74(22), 10137–10159 (2015)

    Article  Google Scholar 

  15. Pohlmeyer, E.A., Wang, J., Jangraw, D.C., Lou, B., Chang, S.-F., Sajda, P.: Closing the loop in cortically-coupled computer vision: a brain-computer interface for searching image databases. J. Neural Eng. 8(3), 036025 (2011)

    Article  Google Scholar 

  16. Koelstra, S., Mühl, C., Patras, I.: EEG analysis for implicit tagging of video data. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  17. Subramanian, R., Wache, J., Abadi, M., Vieriu, R., Winkler, S., Sebe, N.: ASCERTAIN: emotion and personality recognition using commercial sensors. IEEE Trans. Affect. Comput. PP, 1 (2016)

    Article  Google Scholar 

  18. Shukla, A., Gullapuram, S.S., Katti, H., Yadati, K., Kankanhalli, M., Subramanian, R.: Affect recognition in ads with application to computational advertising. In: ACM International Conference on Multimedia (2017)

    Google Scholar 

  19. Kapoor, A., Shenoy, P., Tan, D.: Combining brain computer interfaces with vision for object categorization. In: CVPR (2008)

    Google Scholar 

  20. Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Shah, M., Souly, N.: Deep learning human mind for automated visual classification (2017)

    Google Scholar 

  21. Bilalpur, M., Kia, S.M., Chawla, M., Chua, T., Subramanian, R.: Gender and emotion recognition with implicit user signals. In: International Conference on Multimodal Interaction (2017)

    Google Scholar 

  22. Picton, T.W., et al.: The p300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–456 (1992)

    Article  Google Scholar 

  23. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGnet: a compact convolutional network for EEG-based brain-computer interfaces. arXiv preprint arXiv:1611.08024 (2016)

  24. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:1511.07289 (2015)

  25. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Paszke, A., Chintala, S., Collobert, R., Kavukcuoglu, K., Farabet, C., Bengio, S., Melvin, I., Weston, J., Mariethoz, J.: Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration, May 2017. https://github.com/pytorch/pytorch

  27. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. In: Human Brain Mapping, August 2017. https://doi.org/10.1002/hbm.23730

  28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  30. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  31. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

    Article  Google Scholar 

  32. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge 2012 (VOC2012) Results

    Google Scholar 

  33. Polich, J.: Updating P300: an integrative theory of p3a and p3b. Clin. Neurophysiol. 118(10), 2128–2148 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viral Parekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parekh, V., Subramanian, R., Roy, D., Jawahar, C.V. (2018). An EEG-Based Image Annotation System. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics