Skip to main content

Recent Advances in Abiotic Stress Tolerance of Plants Through Chemical Priming: An Overview

  • Chapter
  • First Online:
Advances in Seed Priming

Abstract

Plants under natural conditions often face multiple environmental constraints in terms of submergence, temperature extremes, salinity, and drought stress. Plant growth and productivity is negatively influenced by these abiotic stresses. Presently, a variety of approaches are being used to overcome abiotic stresses in plants. Recently, seed soaking with various priming agents has emerged as a promising strategy to induce tolerance in plants against abiotic stresses. In seed priming, seeds are treated with synthetic or natural compounds prior to germination so as to initiate specific physiological state in plants. Seed priming could also be defined as physiological state which enables plants to more quickly respond to abiotic stresses. Plants raised from seeds treated with various priming agents tend to show greater abiotic stress tolerance over unprimed seeds. Induction of abiotic stress tolerance through priming is an intricate process that involves various metabolic events. Primed seeds show early and uniform germination and seedling emergence. Seed priming enables plants to survive adverse environmental conditions and gives appropriate yield. In this book chapter, we have discussed a wide range of chemical which are extensively being used for seed priming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate PE, Dardanelli JL, Cantarero MG, Maturano M, Melchiori RJM, Suero EE (2004) Climatic and water availability effects on water-use efficiency in wheat. Crop Sci 44(2):474–483

    Article  Google Scholar 

  • Abebe AT, Modi A (2009) Hydro-priming in dry bean (Phaseolus vulgaris L.). Res J Seed Sci 2(2):23–31

    Article  Google Scholar 

  • Adams S, Cockshull K, Cave C (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88(5):869–877

    Article  Google Scholar 

  • Afzal I, Basra SMA, Ahmad N, Farooq M (2005) Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.)

    Google Scholar 

  • Agami RA (2014) Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58(2):341–347. https://doi.org/10.1007/s10535-014-0392-y

    Article  CAS  Google Scholar 

  • Ahmad S (2012) Oxidative stress and antioxidant defenses in biology. Springer

    Google Scholar 

  • Ahmad A, Diwan H, Abrol YP (2010) Global climate change, stress and plant productivity. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 503–521. https://doi.org/10.1007/978-90-481-3112-9_23

    Chapter  Google Scholar 

  • Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effects of seed priming on germination and emergence traits of two soybean cultivars under salinity stress. J Basic Appl Sci Res 3:234–241

    CAS  Google Scholar 

  • Akbari G, Sanavy S, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci PJBS 10(15):2557–2561

    Article  PubMed  CAS  Google Scholar 

  • Aldesuquy H, Baka Z, Mickky B (2014) Kinetin and spermine mediated induction of salt tolerance in wheat plants: leaf area, photosynthesis and chloroplast ultrastructure of flag leaf at ear emergence. Egypt J Basic Appl Sci 1(2):77–87

    Article  Google Scholar 

  • Ali Q, Ashraf M, Shahbaz M, Humera H (2008) Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pak J Bot 40(1):211–219

    CAS  Google Scholar 

  • Al-Mudaris MA, Jutzi SC (1999) The influence of fertilizer-based seed priming treatments on emergence and seedling growth of Sorghum bicolor and Pennisetum glaucum in pot trials under greenhouse conditions. J Agron Crop Sci 182(2):135–142. https://doi.org/10.1046/j.1439-037x.1999.00293.x

    Article  CAS  Google Scholar 

  • Amooaghaie R (2011) The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. Afr J Biotechnol 10(33):6269–6275

    Google Scholar 

  • Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003) Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak J Agric Sci 40:45–49

    Google Scholar 

  • Anosheh HP, Sadeghi H, Emam Y (2011) Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotechnol 14(4):289–295. https://doi.org/10.1007/s12892-011-0039-x

    Article  Google Scholar 

  • Arif M, Waqas M, Nawab K, Shahid M (2007) Effect of seed priming in Zn solutions on chickpea and wheat. Afr Crop Sci Pro 8:237–240

    Google Scholar 

  • Arif M, Jan MT, Marwat KB, Khan MA (2008) Seed priming improves emergence and yield of soybean. Pak J Bot 40(3):1169–1177

    Google Scholar 

  • Ashraf M, Bray C (1993) DNA synthesis in osmoprimed leek (Allium porrum L.) seeds and evidence for repair and replication

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  • Ashraf M, Rauf H (2001) Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: growth and ion transport at early growth stages. Acta Physiol Plant 23(4):407–414. https://doi.org/10.1007/s11738-001-0050-9

    Article  CAS  Google Scholar 

  • Ashraf M, Iqbal M, Hussain I, Rasheed R (2015a) Physiological and biochemical approaches for salinity tolerance. Managing salt tolerance in plants: molecular and genomic perspectives, 79

    Chapter  Google Scholar 

  • Ashraf MA, Rasheed R, Hussain I, Iqbal M, Haider MZ, Parveen S, Sajid MA (2015b) Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Arch Agron Soil Sci 61(4):507–523. https://doi.org/10.1080/03650340.2014.938644

    Article  CAS  Google Scholar 

  • Bajehbaj AA (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr J Biotechnol 9(12):1764–1770

    Article  CAS  Google Scholar 

  • Barba-Espín G, Hernández JA, Diaz-Vivancos P (2012) Role of H2O2 in pea seed germination. Plant Signal Behav 7(2):193–195. https://doi.org/10.4161/psb.18881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    PubMed  Google Scholar 

  • Basra SMA, Pannu IA, Afzal I (2003) Evaluation of seedling vigor of hydro and matriprimed wheat (Triticum aestivum L.) seeds. Int J Agric Biol 5(2):121–123

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Bhaskara Reddy M, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47(3):1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14(3):6382–6413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bisht C, Badoni A, Vashishtha R, Nautiyal M (2009) Photoperiodic effect on seed germination in pyrethrum (Chrysanthemum cinerariaefolium vis.) under the influence of some growth regulators. J Am Sci 5:147–150

    Google Scholar 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162(3):671–681

    Article  CAS  PubMed  Google Scholar 

  • Brocklehurst PA, Dearman J, Drew RLK (1984) Effects of osmotic priming on seed germination and seedling growth in leek. Sci Hortic 24(3):201–210. https://doi.org/10.1016/0304-4238(84)90103-1

    Article  Google Scholar 

  • Busch S, Lorenz CD, Taylor J, Pardo LC, McLain SE (2014) Short-range interactions of concentrated proline in aqueous solution. J Phys Chem B 118(49):14267–14277

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530. https://doi.org/10.1002/jpln.200420485

    Article  CAS  Google Scholar 

  • Caseiro R, Bennett M, Marcos-Filho J (2004) Comparison of three priming techniques for onion seed lots differing in initial seed quality. Seed Sci Technol 32(2):365–375

    Article  Google Scholar 

  • Cayuela E, Pérez-Alfocea F, Caro M, Bolarín MC (1996) Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol Plant 96(2):231–236. https://doi.org/10.1111/j.1399-3054.1996.tb00207.x

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci 180(2):212–220. https://doi.org/10.1016/j.plantsci.2010.08.007

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5(3):250–257. https://doi.org/10.1016/S1369-5266(02)00255-8

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13(9):499–505. https://doi.org/10.1016/j.tplants.2008.06.007

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Sung JM (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol Plant 111(1):9–16. https://doi.org/10.1034/j.1399-3054.2001.1110102.x

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Cuartero J, Fernández-Muñoz R (1998) Tomato and salinity. Sci Hortic 78(1):83–125. https://doi.org/10.1016/S0304-4238(98)00191-5

    Article  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30(7):875–885. https://doi.org/10.1111/j.1365-3040.2007.01674.x

    Article  PubMed  CAS  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(09):362–368

    Google Scholar 

  • Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Hortic 102(4):467–473. https://doi.org/10.1016/j.scienta.2004.04.012

    Article  Google Scholar 

  • Demir I, Ozuaydın I, Yasar F, Van Staden J (2012) Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S Afr J Bot 78:83–87. https://doi.org/10.1016/j.sajb.2011.05.009

    Article  CAS  Google Scholar 

  • Draganic I, Lekic S (2012) Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turk J Agric For 36(4):421–428

    Google Scholar 

  • Dubrovsky JG (1996) Seed hydration memory in Sonoran Desert cacti and its ecological implication. Am J Bot 83:624–632

    Article  Google Scholar 

  • Duncan DR, Widholm JM (1987) Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiol 83(3):703–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egilla J, Davies F, Boutton T (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43(1):135–140

    Article  CAS  Google Scholar 

  • Ehsanpour AA, Fatahian N (2003) Effects of salt and proline on Medicago sativa callus. Plant Cell Tissue Organ Cult 73(1):53–56. https://doi.org/10.1023/a:1022619523726

    Article  CAS  Google Scholar 

  • Eisvand H, Tavakkol-Afshari R, Sharifzadeh F, Maddah Arefi H, Hesamzadeh Hejazi S (2010) Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci Technol 38(2):280–297

    Article  Google Scholar 

  • Elkoca E, Haliloglu K, Esitken A, Ercisli S (2007) Hydro- and osmopriming improve chickpea germination. Acta Agric Scand Sect B Soil Plant Sci 57(3):193–200. https://doi.org/10.1080/09064710600914087

    Article  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy E, Elhawat N, Prokisch J, Sztrik A, Fári M, El-Marsafawy S, Shams MS (2015) Selenium in soils under climate change, implication for human health. Environ Chem Lett 13(1):1–19

    Article  CAS  Google Scholar 

  • Farahbakhsh H (2012) Germination and seedling growth in un-primed and primed seeds of Fenel as affected by reduced water potential induced by NaCl. Int Res J App Basic Sci 3(4):737–744

    CAS  Google Scholar 

  • Farhoudi R, Sharifzadeh F (2006) The effects of NaCl priming on salt tolerance in canola (Brassica napus L.) seedlings grown under saline conditions. Indian J Crop Sci 1(1–2):74–78

    Google Scholar 

  • Farooq M, Basra SM, Rehman H, Mehmood T (2006) Germination and early seedling growth as affected by pre-sowing ethanol seed treatments in fine rice. Int J Agric Biol 8:19–22

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  • Fedoroff N, Battisti D, Beachy R, Cooper P, Fischhoff D, Hodges C, Knauf V, Lobell D, Mazur B, Molden D (2010) Radically rethinking agriculture for the 21st century. Science 327(5967):833–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V (2014) Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot 97:1–10

    Article  CAS  Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2(4):191–206

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  PubMed  CAS  Google Scholar 

  • Foti R, Abureni K, Tigere A, Gotosa J, Gere J (2008) The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ 72(6):1127–1130. https://doi.org/10.1016/j.jaridenv.2007.11.008

    Article  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45(2):105–114

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442. https://doi.org/10.1016/j.pbi.2006.05.014

    Article  PubMed  Google Scholar 

  • Gajalakshmi S, Iswarya V, Ashwini R, Divya G, Mythili S, Sathiavelu A (2012) Evaluation of heavy metals in medicinal plants growing in Vellore District. Eur J Exp Biol 2(5):1457–1461

    CAS  Google Scholar 

  • Gao Y-P, Bonham-Smith PC, Gusta LV (2002) The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol 159(9):951–958. https://doi.org/10.1078/0176-1617-00782

    Article  CAS  Google Scholar 

  • Garg B (2003) Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric 27(1/2):1–8

    Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman J-F, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37(3):263–285

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Esmaeilpour B (2008) The effect of salt priming on the performance of differentially matured cucumber (Cucumis sativus) seeds. Notulae Botanicae Hortic Agrobotanici Cluj-Napoca 36(2):67

    CAS  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6(11):1746–1751. https://doi.org/10.4161/psb.6.11.17801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan Y-J, Hu J, Wang X-J, Shao C-X (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433. https://doi.org/10.1631/jzus.B0820373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gul B, Khan MA (2004) Effect of growth regulators and osmotica in alleviating salinity effects on the germination of Salicornia utahensis. Pak J Bot 35(5; SPI):885–894

    Google Scholar 

  • Haghpanah A, Younesi O, Moradi A (2009) The effect of priming on seedling emergence of differentially matured sorghum (Sorghum bicolor L.) seeds. J Appl Sci Res 5:729–732

    CAS  Google Scholar 

  • Hall A (2001) Crop developmental responses to temperature, photoperiod, and light quality. In: Crop response to environment, pp 83–87

    Google Scholar 

  • Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181(5):555–559. https://doi.org/10.1016/j.plantsci.2011.03.017

    Article  PubMed  CAS  Google Scholar 

  • Harada E, Kim J-A, Meyer AJ, Hell R, Clemens S, Choi Y-E (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637

    Article  PubMed  CAS  Google Scholar 

  • Harb E (1992) Effect of soaking seeds in some growth regulators and micronutrients on growth, some chemical constituents and yield of faba bean and cotton plants. Bull Fac Agric Cairo Univ (Egypt) 43:429–452

    Google Scholar 

  • Harris D, Tripathi R, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, pp 261–315

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad M, Ozturk M (2013) Enhancing plant productivity under salt stress: relevance of poly-omics. In: Salt stress in plants. Springer, pp 113–156

    Chapter  Google Scholar 

  • Hauser M-T (2014) Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Howarth C (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses–plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 277–300

    Google Scholar 

  • Hua-Long L, Han-Jing S, Jing-Guo W, Yang L, De-Tang Z, Hong-Wei Z (2014) Effect of seed soaking with exogenous proline on seed germination of rice under salt stress. J Northeast Agric Univ (Engl Ed) 21(3):1–6. https://doi.org/10.1016/S1006-8104(14)60062-3

    Article  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53(1):225–245

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46(1):19–30. https://doi.org/10.1007/s10725-005-5901-8

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J Plant Nutr 30(3):381–396. https://doi.org/10.1080/01904160601171330

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48(2):181–189. https://doi.org/10.1111/j.1744-7909.2006.00181.x

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166(15):1587–1597. https://doi.org/10.1016/j.jplph.2009.04.002

    Article  PubMed  CAS  Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198(1):38–45. https://doi.org/10.1111/j.1439-037X.2011.00485.x

    Article  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin N (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20(5):463–468. https://doi.org/10.1007/s002990100353

    Article  CAS  Google Scholar 

  • Jain N, Kulkarni MG, van Staden J (2006) A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regul 49(2):263–267. https://doi.org/10.1007/s10725-006-9136-0

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007a) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29(3):205–209. https://doi.org/10.1007/s11738-007-0025-6

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Sankari S, Panneerselvam R (2007b) Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem 42(11):1566–1570

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31(3):427–436

    Article  CAS  Google Scholar 

  • Jett LW, Welbaum GE, Morse RD (1996) Effects of matric and osmotic priming treatments on broccoli seed germination. J Am Soc Hortic Sci 121(3):423–429

    Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35(5):1381–1396. https://doi.org/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaji HM, Bosa K, KoÅ›cielniak J, Å»uk-GoÅ‚aszewska K (2011) Effects of salt stress on photosystem II efficiency and CO 2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kamran M, Shahbaz M, Ashraf M, Akram NA (2009) Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pak J Bot 41(2):621–632

    Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59(4):609–619. https://doi.org/10.1007/s10535-015-0549-3

    Article  CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37(1):17–22. https://doi.org/10.1023/a:1020310008830

    Article  CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2005) Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J Agron Crop Sci 191(2):81–87. https://doi.org/10.1111/j.1439-037X.2004.00140.x

    Article  Google Scholar 

  • Kaur G, Athar M, Alam MS (2008) Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem Biol Interact 171(3):272–282

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Grewal S, Kaur J, Singh S (2017) Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biol Plant 61(2):359–366

    Article  CAS  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295. https://doi.org/10.1016/j.eja.2005.08.001

    Article  CAS  Google Scholar 

  • Khalil SK, Mexal JG, Murray LW (2001) Germination of soybean seed primed in aerated solution of polyethylene glycol 8000. Online J Biol Sci 1(3):105–107

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2002) Improving seed germination of Salicornia rubra (Chenopodiaceae) under saline conditions using germination-regulating chemicals. West N Am Nat 62:101–105

    Google Scholar 

  • Khan MB, Gurchani MA, Hussain M, Freed S, Mahmood K (2011) Wheat seed enhancement by vitamin and hormonal priming. Pak J Bot 43(3):1495–1499

    Google Scholar 

  • Korkmaz A, Pill W (2003) The effect of different priming treatments and storage conditions on germination performance of lettuce seeds. Eur J Hortic Sci 68:260–265

    CAS  Google Scholar 

  • Kulkarni MG, Sparg SG, Light ME, Van Staden J (2006) Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J Agron Crop Sci 192(5):395–398. https://doi.org/10.1111/j.1439-037X.2006.00213.x

    Article  CAS  Google Scholar 

  • Kumar A, Maiti SK (2013) Availability of chromium, nickel and other associated heavy metals of ultramafic and serpentine soil/rock and in plants. Int J Emerg Technol Adv Eng 3(2):256–268

    Google Scholar 

  • Kumar M, Sirhindi G, Bhardwaj R, Kumar S, Jain G (2010) Effect of exogenous H 2 O 2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress

    Google Scholar 

  • Lazaridou M, Noitsakis B (2003) The effect of water deficit on yield and water use efficiency of lucerne. In: Optimal forage systems for animal production and the environment. Proceedings of the 12th symposium of the European Grassland Federation, Pleven, Bulgaria, 26–28 May 2003. Bulgarian Association for Grassland and Forage Production (BAGFP), pp 344–347

    Google Scholar 

  • Lee S, Moon JS, Domier LL, Korban SS (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol Biochem 40(9):727–733

    Article  CAS  Google Scholar 

  • Li J, Yin LY, Jongsma MA, Wang CY (2011) Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Ind Crop Prod 34(3):1543–1549. https://doi.org/10.1016/j.indcrop.2011.05.012

    Article  Google Scholar 

  • Manickavelu A, Nadarajan N, Ganesh S, Gnanamalar R, Babu RC (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50(2–3):121–138

    Article  CAS  Google Scholar 

  • Manjunatha G, Raj SN, Shetty NP, Shetty HS (2008) Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pestic Biochem Physiol 91(1):1–11. https://doi.org/10.1016/j.pestbp.2007.11.012

    Article  CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126(3):382–397. https://doi.org/10.1111/j.1399-3054.2006.00684.x

    Article  CAS  Google Scholar 

  • McWilliams D (2003) Drought strategies for cotton, cooperative extension service circular 582, College of Agriculture and Home Economics. New Mexico State University, Las Cruces

    Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284(39):26482–26492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirza H, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5(4):354–375

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Mohanty M, Patra HK (2013) Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna radiata L. wilczek. var k-851) during seedling growth. J Stress Physiol Biochem 9(2):232–241

    Google Scholar 

  • Monakhova O, Chernyad’ev I (2002) Protective role of kartolin-4 in wheat plants exposed to soil draught. Appl Biochem Microbiol 38(4):373–380

    Article  CAS  Google Scholar 

  • Moradi A, Younesi O (2009) Effects of osmo-and hydro-priming on seed parameters of grain sorghum (Sorghum bicolor L.). Aust J Basic Appl Sci 3(3):1696–1700

    CAS  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Advances in selected plant physiology aspects. InTech

    Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Nam N, Chauhan Y, Johansen C (2001) Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agric Sci 136(2):179–189

    Article  Google Scholar 

  • Nath K, Singh D, Shyam S, Sharma YK (2008) Effect of chromium and tannery effluent toxicity on metabolism and growth in cowpea (Vigna sinensis L. Saviex Hassk) seedling. Res Environ Life Sci 1(3):91–94

    Google Scholar 

  • Nawaz A, Amjad M, Pervez MA, Afzal I (2011) Effect of halopriming on germination and seedling vigor of tomato. Afr J Agric Res 6(15):3551–3559

    Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2:969–974

    CAS  Google Scholar 

  • Nerd A, Nobel PS (1991) Effects of drought on water relations and nonstructural carbohydrates in cladodes of Opuntia ficus-indica. Physiol Plant 81(4):495–500

    Article  CAS  Google Scholar 

  • Okçu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric For 29(4):237–242

    Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012:1–8

    Article  CAS  Google Scholar 

  • Ozbingol N, Corbineau F, Come D (1998) Responses of tomato seeds to osmoconditioning as related to temperature and oxygen. Seed Sci Res 8(3):377–384

    Article  Google Scholar 

  • Panda S, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1):95–102

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44(3):243–252. https://doi.org/10.1007/bf00048597

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  PubMed  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Park E-J, Jeknic Z, Sakamoto A, Denoma J, Murata N, Chen TH (2003) Genetic engineering of cold-tolerant tomato via glycinebetaine biosynthesis. Cryobiol Cryotechnol 49:77–85

    Google Scholar 

  • Park E-J, Jeknić Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40(4):474–487. https://doi.org/10.1111/j.1365-313X.2004.02237.x

    Article  PubMed  CAS  Google Scholar 

  • Park E-J, Jeknic Z, Chen TH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47(6):706–714

    Article  PubMed  CAS  Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134(1):24–28. https://doi.org/10.1016/j.agee.2009.07.003

    Article  CAS  Google Scholar 

  • Peuke A, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154(2):373–387

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Janas KM (2007) Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol Plant 29(6):509–517. https://doi.org/10.1007/s11738-007-0061-2

    Article  CAS  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167(5):1159–1169

    Article  CAS  Google Scholar 

  • Randhir R, Shetty K (2005) Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Process Biochem 40(5):1721–1732. https://doi.org/10.1016/j.procbio.2004.06.064

    Article  CAS  Google Scholar 

  • Rashid A, Harris D, Hollington P, Ali S (2004) On-farm seed priming reduces yield losses of mungbean (Vigna radiata) associated with mungbean yellow mosaic virus in the North West Frontier Province of Pakistan. Crop Prot 23(11):1119–1124. https://doi.org/10.1016/j.cropro.2004.04.002

    Article  Google Scholar 

  • Rashid A, Hollington PA, Harris D, Khan P (2006) On-farm seed priming for barley on normal, saline and saline–sodic soils in North West Frontier Province, Pakistan. Eur J Agron 24(3):276–281. https://doi.org/10.1016/j.eja.2005.10.006

    Article  CAS  Google Scholar 

  • Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc-and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics J 4(7):377–383

    CAS  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86(4):709–716

    Article  CAS  Google Scholar 

  • Reddy CS, Smith JD (1978) Effects of delayed post treatment of gamma-irradiated seed with cysteine on the growth of Sorghum bicolor seedlings. Environ Exp Bot 18(4):241–243. https://doi.org/10.1016/0098-8472(78)90050-3

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson A (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44(1):357–384

    Article  CAS  Google Scholar 

  • Rithichai P, Sampantharat P, Jirakiattikul Y (2009) Coriander (Coriandrum sativum l.) seed quality as affected by accelerated aging and subsequent hydropriming. Asian J Food Agro Ind 1:217–221

    Google Scholar 

  • Rouhi HR, Afshari RT, Moosavi SA, Gharineh MH (2010) Effects of osmopriming on germination and vigour traits of bersim clover (Trifolium alexandrinum L.). Notulae Sci Biol 2(4):59

    Article  Google Scholar 

  • Rouhi HR, Aboutalebian MA, Sharif-Zadeh F (2011) Effects of hydro and osmopriming on drought stress tolerance during germination in four grass species. Int J Agrisience 1(2):107–114

    Google Scholar 

  • Roy D, Basu N, Bhunia A, Banerjee SK (1993) Counteraction of exogenous L-proline with NaCl in salt-sensitive cultivar of rice. Biol Plant 35(1):69. https://doi.org/10.1007/bf02921122

    Article  CAS  Google Scholar 

  • Ruan S, Xue Q (2002) Effects of chitosan coating on seed germination and salt-tolerance of seedling in hybrid rice (Oryza sativa L.). Zuo Wu Xue Bao 28(6):803–808

    Google Scholar 

  • Rubluo A (1982) The effect of L-cysteine on presoaked barley seeds treated with methyl methanesulfonate. Experientia 38(3):326–327. https://doi.org/10.1007/bf01949371

    Article  PubMed  CAS  Google Scholar 

  • Sadak MS, Mostafa HA (2015) Physiological role of pre-sowing seed with proline on some growth, biochemical aspects, yield quantity and quality of two sunflower cultivars grown under seawater salinity stress. Sci Agric 9(1):60–69

    CAS  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek)

    Google Scholar 

  • Sahu M, Kumawat S, D’souza S, Ramaswamy N, Singh G (2005) Sulphydryl bioregulator technology for increasing mustard production. Research Bulletin RAU-BARC, pp 1–52

    Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51(342):81–88

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171

    Article  PubMed  CAS  Google Scholar 

  • Salama KH, Mansour MM, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P (1998) Role of chromium on plant growth and metabolism. Acta Physiol Plant 20(2):201–212

    Article  CAS  Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25(1):145–149

    Article  Google Scholar 

  • Sarwar N, Yousaf S, Jamil FF (2006) Induction of salt tolerance in chickpea by using simple and safe chemicals. Pak J Bot 38(2):325

    Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    PubMed  CAS  Google Scholar 

  • Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides× maximowiczii) and I-214 (P.× euramericana) exposed to industrial waste. Environ Exp Bot 52(1):79–88

    Article  CAS  Google Scholar 

  • Sedghi M, Nemati A, Amanpour-Balaneji B, Gholipouri A (2010) Influence of different priming materials on germination and seedling establishment of milk thistle (Silybum marianum) under salinity stress. World Appl Sci J 11(5):604–609

    CAS  Google Scholar 

  • Shahrokhi M, Tehranifar A, Hadizadeh H, Selahvarzi Y (2011) Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. master and Lolium perenne L. barrage. J Biol Environ Sci 5(14):77–85

    Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164(3):317–322

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  PubMed  CAS  Google Scholar 

  • Shao C, Hu J, Song W, Hu W (2005) Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. J Zhejiang Univ (Agric Life Sci) 31(6):705–708

    CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Siddique M, Hamid A, Islam M (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39

    Google Scholar 

  • Singh B, Rao G (1993) Effects of chemical soaking of sunflower (Helianthus annuus L.) seed on vigour index. Indian J Agric Sci 2:232–233

    Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11(3):229–254

    Article  CAS  Google Scholar 

  • Sivritepe HÖ, Sivritepe N, EriÅŸ A, Turhan E (2005) The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106(4):568–581. https://doi.org/10.1016/j.scienta.2005.05.011

    Article  CAS  Google Scholar 

  • Somerville C, Briscoe J (2001) Genetic engineering and water. American Association for the Advancement of Science

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Jain R (2011) In-situ monitoring of chromium cytotoxicity in sugarcane. J Environ Biol 32(6):759

    PubMed  CAS  Google Scholar 

  • Srivastava A, Ramaswamy N, Mukopadhyaya R, Jincy MC, D’Souza S (2008) Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea. Ann Bot 103(3):403–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010a) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32(6):1135–1144. https://doi.org/10.1007/s11738-010-0505-y

    Article  Google Scholar 

  • Srivastava AK, Suprasanna P, Srivastava S, D’Souza SF (2010b) Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Sci 178(6):517–522. https://doi.org/10.1016/j.plantsci.2010.02.015

    Article  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57(5):1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen THH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J 36(2):165–176. https://doi.org/10.1046/j.1365-313X.2003.01873.x

    Article  PubMed  CAS  Google Scholar 

  • Sultana N, Ikeda T, Mitsui T (2000) GA3 and proline promote germination of wheat seeds by stimulating α-Amylase at unfavorable temperatures. Plant Prod Sci 3(3):232–237

    Article  Google Scholar 

  • Sun Y-Y, Sun Y-J, Wang M-T, Li X-Y, Guo X, Hu R, Ma J (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36(11):1931–1940. https://doi.org/10.1016/S1875-2780(09)60085-7

    Article  CAS  Google Scholar 

  • Sung JM, Chiu KY (1995) Hydration effect on seedling emergence strength of watermelon seeds differing in ploidy. Plant Sci 110(1):21–26. https://doi.org/10.1016/0168-9452(95)04183-U

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  • Tavili A, Zare S, Enayati Z (2009) Hydropriming, ascorbic and salicylic acid influence on germination of agropyron elongation host. Seeds under salt stress

    Google Scholar 

  • Tavili A, Zare S, Moosavi SA, Enayati A (2011) Effects of seed priming on germination characteristics of Bromus species under salt and drought conditions. Am Eurasian J Agric Environ Sci 10(2):163–168

    Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Thomas U, Varughese K, Thomas A, Sadanandan S (2000) Seed priming for increased vigour, viability and productivity of upland rice. Leisa India 4:14

    Google Scholar 

  • Tiryaki I, Korkmaz A, Nas M, Ozbay N (2005) Priming combined with plant growth regulators promotes germination and emergence of dormant Amaranthus cruentus L. seeds. Seed Sci Technol 33(3):571–579

    Article  Google Scholar 

  • Todorov D, Karanov E, Smith A, Hall M (2003) Chlorophyllase activity and chlorophyll content in wild and mutant plants of Arabidopsis thaliana. Biol Plant 46(1):125–127

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759. https://doi.org/10.1007/s00726-008-0061-6

    Article  PubMed  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137(3):455–465

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Rasul E, Rao R, Iqbal R (2005) Photosynthesis in leaf, stem, flower and fruit. Handb Photosynth 2:479–497

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007a) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007b) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164(3):283–294. https://doi.org/10.1016/j.jplph.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135(3):1447–1456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139. https://doi.org/10.1046/j.1365-3040.2002.00782.x

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28(2):325–333. https://doi.org/10.1007/s00299-008-0643-5

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63(3):279–290. https://doi.org/10.1007/s10725-010-9528-z

    Article  CAS  Google Scholar 

  • Yadav PV, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4(3):125–136

    Article  Google Scholar 

  • Yagmur M, Kaydan D (2008) Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. Afr J Biotechnol 7(13):2156–2162

    CAS  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Cellular and molecular physiology of cell volume regulation, pp 81–109

    Google Scholar 

  • Yeh Y, Chiu K, Chen C, Sung J (2005) Partial vacuum extends the longevity of primed bitter gourd seeds by enhancing their anti-oxidative activities during storage. Sci Hortic 104(1):101–112

    Article  CAS  Google Scholar 

  • Zeid I, Shedeed Z (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50(4):635–640

    Article  CAS  Google Scholar 

  • Zhang JX, Wang C, Yang CY, Wang JY, Chen L, Bao XM, Zhao YX, Zhang H, Liu J (2010) The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance. Plant J 62(4):539–548

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Rue K, Mueller J (2014) The effect of glycinebetaine priming on seed germination of six turfgrass species under drought, salinity, or temperature stress. Hortscience 49(11):1454–1460

    CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65(1):27–34. https://doi.org/10.1016/j.envexpbot.2008.06.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf, M.A., Akbar, A., Askari, S.H., Iqbal, M., Rasheed, R., Hussain, I. (2018). Recent Advances in Abiotic Stress Tolerance of Plants Through Chemical Priming: An Overview. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming . Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_4

Download citation

Publish with us

Policies and ethics