Skip to main content

Numerical Study on Flexural Capacity of Biaxial Hollow Slab

  • Conference paper
  • First Online:
Recent Advances in Structural Engineering, Volume 1

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 11))

Abstract

Biaxial hollow slab is a type of slab in which concrete from the middle of the slab (floor) has been eliminated by means of voids. This type of slab system is mainly used as reinforced concrete flat slab. Its main advantage is reduction in self-weight (about 30–50%). However, the presence of voids reduces the area of slab concrete, which leads to reduction in the flexural stiffness and shear resistance. In this study, simulations were carried out by using finite element software DIANA (Displacement Analyzer) to investigate the flexural capacity of the biaxial hollow slab. Parametric studies were carried out to compare the effect of different types of voids on the behaviour of the slab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, L., Lee, S. H., Cho, S. H., Woo, S. S., & Choi, K. K. (2010). Investigations on flexural strength and stiffness of hollow slabs. Advances in Structural Engineering, 13(4), 591–602.

    Article  Google Scholar 

  2. Aldejohann, M., & Schnellenbach-Held, M. (2003). Investigations on the shear capacity of biaxial hollow slabs—Test results and evaluation. Darmstadt Concrete, 18, 1–11.

    Google Scholar 

  3. DIANA. (2008). “User’s Manual”, Release 9.3, (a) Material Library, (b) FX + (for pre- and post-processors for DIANA), (c) Element Library, TNO DIANA BV, The Netherlands.

    Google Scholar 

  4. Kim, S., Kang, I., & Lee, H. (2007). Experimental study on the flexural behavior of I-Slab. Proceeding of Korea Concrete Institute, 19(2), 5–8.

    Google Scholar 

  5. Lee, W., Cho, S., Lee, S., Lan, C., & Cho, S. (2007). Flexural performance of hollow slab with elliptical balls. Proceeding of Korea Concrete Institute, 19(2), 33–36.

    Google Scholar 

  6. Hwang, H., Kim, S., Hwang, H., Lee, K., & Lee, J. (2008). Structural performance evaluation of hollow reinforced concrete half slabs. Proceeding of Korea Concrete Institute, 20(1), 45–48.

    Google Scholar 

  7. Chung, J. H., Ahn, N. K., Choi, H. K., & Chang, C. S. (2009). An analytical study of optimal hollow sphere shapes in hollow slab. Journal of the Korea Institute for Structural Maintenance, 159–162.

    Google Scholar 

  8. Chung, J. H., Choi, H. K., Lee, S. C., Oh, J. K., & Choi, C. S. (2009). An analytical study of the impact of hollow sphere on biaxial hollow slab. In Proceeding of Annual Conference of the Architectural Institute of Korea (pp. 475−478).

    Google Scholar 

  9. Chung, L., Lee, S. H., Cho, S. H., Woo, S. S., & Choi, K. K. (2010). Investigations on flexural strength and stiffness of hollow slabs. Advances in Structural Engineering, 13(4), 591–602.

    Article  Google Scholar 

  10. Kim, S. H. (2010). Flexural behavior of void RC and PC slab with polystyrene forms. Key Engineering Materials, 452, 61–64.

    Article  Google Scholar 

  11. Kim, B. H., Chung, J. H., Choi, H. K., Lee, S. C., & Choi, C. K. (2011). Flexural capacities of one way hollow slab with donut type hollow sphere. Key Engineering Materials, 452, 773–776.

    Google Scholar 

  12. Borst, R. D. (1987). Smeared cracking, plasticity, creep, and thermal loading—A unified approach. Computer Methods in Applied Mechanics and Engineering, 62(1), 89–110.

    Article  Google Scholar 

  13. Mohammadi, S. (2008). Extended finite element method for fracture analysis of structures. Blackwell Publishing Ltd.

    Google Scholar 

  14. Cornelissen, H. A. W., Hordijk, D. A., & Reinhardt, H. W. (1986). Experimental determination of crack softening characteristics of normal weight and lightweight concrete. Heron, 31(2).

    Google Scholar 

  15. Roesler, J. (2007). Concrete fracture prediction using bilinear softening. Cement & Concrete Composites, 29(13), 300–312. (Elsevier Science B.V).

    Article  Google Scholar 

  16. Hordijk, D. A., Reinhardt, H. W., & Cornelissen, H. A. W. (1987). Fracture mechanics parameter of concrete from uniaxial tensile test as influenced by specimen length. In Pre-printed of SEM/RILEM International Conference on Fracture of Concrete and Rock, Houston, Tex. S. P. Shah and S. Swartz, eds., SES (Society of Experimental Mechanics), 138–149.

    Google Scholar 

  17. Scotta, R., Vitaliani Saetta, A., Nate, E. O., & Hanganu, A. (2001). A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: Theory and validation. Computers & Structures, 99(7), 737–755. (Elsevier Science B.V).

    Article  Google Scholar 

  18. IS 456: 2000. Indian Standard Code of Practice for Plain and Reinforced Concrete. Bureau of Indian Standards, New Delhi.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sagadevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sagadevan, R., Nageswara Rao, B. (2019). Numerical Study on Flexural Capacity of Biaxial Hollow Slab. In: Rao, A., Ramanjaneyulu, K. (eds) Recent Advances in Structural Engineering, Volume 1. Lecture Notes in Civil Engineering , vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-13-0362-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0362-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0361-6

  • Online ISBN: 978-981-13-0362-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics