Skip to main content

High Gain and Highly Directive Microstrip Patch Antenna for Radar and Satellite Communication

  • Conference paper
  • First Online:
Information and Communication Technology for Intelligent Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 107))

Abstract

We demonstrate a rectangular microstrip patch antenna with enhanced performance for radar and satellite communication. The FR-4 epoxy substrate-based antenna exhibits resonant frequency at 7.5 GHz with return loss of −63.83 dB. The implementation of defected ground structure yields wideband response with substantial increase in the percentage bandwidth from 6.13 to 39.17%. The designed antenna’s structure has significantly high gain and high directivity of 8.5 dB and 8.21 dBi, respectively. The rectangular patch, feedline, and ground components are of copper. The performance evaluation is done in terms of return loss, resonant frequency, gain and directivity. A comprehensive analysis on parametric alterations is carried out to obtain the optimized structure. The parametric analysis will be discussed thoroughly illustrating the effect on antenna performance. The structure is fabricated and tested using anechoic chamber integrated E5071C Network Analyzer. We found that the practical results match very closely with simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhillon, A.S., Mittal, D., Sidhu, E.: THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Opt. Int. J. Light Electron. Opt. 144, 634–641 (2017)

    Article  Google Scholar 

  2. De Farias, A.R.N., Fernands, H.C.C.: Microstrip Antenna Design Using the TTL Method, pp. 1–6 (1997)

    Google Scholar 

  3. Chakraborty, U., Roy, B.C., Chatterjee, S., Chowdhury, S.K., Sarkar, P.P.: A comact microstrip patch antenna for wireless communication. Prog. Electromagn. Res. C. 18, 211–220 (2011)

    Article  Google Scholar 

  4. Fallahi, R., Kalteh, A.A., Roozbahani, M.G.: A novel UWB elliptical slot antenna with band-notched characteristics. Prog. Electromagn. Res. 82, 127–136 (2008)

    Article  Google Scholar 

  5. Hammerstad, E.O.: Equations for microstrip circuit design. In: 1975 5th European Microwave Conference, pp. 268–272. IEEE (1975)

    Google Scholar 

  6. Letters, O.T.: Compact Microstrip Antenna for Mobile Communication, pp. 1–5 (2013)

    Google Scholar 

  7. Saed, M., Yadla, R.: Microstrip fed-low profile and compact dielectric resonator antennas. Prog. Electromagn. Res. 56, 151–162 (2006)

    Article  Google Scholar 

  8. Prog. Electromagnet. Res. C. 16, 25–35 (2010)

    Google Scholar 

  9. Petosa, A., Ittipiboon, A.: Dielectric resonator antennas: a historical review and the current state of the art. IEEE Antennas Propag. Mag. 52, 91–116 (2010)

    Article  Google Scholar 

  10. Baliarda, C.P., Romeu, J., Cardama, A.: The Koch monopole: a small fractal antenna. IEEE Trans. Antennas Propag. 48, 1773–1781 (2000)

    Article  Google Scholar 

  11. Gianvittorio, J.P., Rahmat-Samii, Y.: Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 44, 20–36 (2002)

    Article  Google Scholar 

  12. Wqrner, D.H., Ganguly, S.: An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 45, 38–57 (2003)

    Article  Google Scholar 

  13. Chang, E., Long, S., Richards, W.: An experimental investigation of electrically thick rectangular microstrip antennas. IEEE Trans. Antennas Propag. 34, 767–772 (1986)

    Google Scholar 

  14. Park, S.-O., Choi, S.-W., Jung, Y.-B.: Multi-band and multi-polarised reconfigurable antenna for next generation mobile communication base-station applications. IET Microw. Antennas Propag. 7, 819–824 (2013)

    Article  Google Scholar 

  15. Mittal, D., Kaur, A., Singh, M., Bhatoa, R., Garg, A., Sidhu, E.: High gain substrate slotted microstrip patch antenna design for X-band satellite uplink applications. In: 2016 Progress in Electromagnetic Research Symposium (PIERS), pp. 1119–1123. IEEE (2016)

    Google Scholar 

  16. Mittal, D., Kaur, A., Singh, L., Sharma, A., Sidhu, E.: Performance analysis of microstrip patch antenna using CSRR and PSRR techniques for WLAN, WiMAX, Wi-Fi and IMT applications. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). pp. 2085–2089. IEEE (2016)

    Google Scholar 

  17. Kaur, A., Nag, A., Mittal, D., Sidhu, E.: Rectangular slitted ground stacked microstrip patch antenna design for public safety purposes. In: 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), pp. 1–5. IEEE (2016)

    Google Scholar 

  18. Chatterjee, D., Kundu, A.K.: Performance analysis and comparative study of microstrip patch antenna using aperture coupled and proximity coupled feeding methodology.In: International Conference on Computer Communication and Signal Processing Spec Focus IoT, ICCCSP 2017, pp. 0–6 (2017)

    Google Scholar 

  19. Bzeih, A., Chahine, S.A., Kabalan, K.Y., El-hajj, A., Chehab, A.: An improved broadband E patch microstrip antenna for wireless communications 42, (2007)

    Google Scholar 

  20. Liu, W., Chen, Z.N., Qing, X.: Metamaterial-Based Low-Profile 62, 1165–1172 (2014)

    Google Scholar 

  21. Lee, K.F., Luk, K.M., Tong, K.F., Shum, S.M., Huynh, T., Lee, R.Q.: Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna. IEE Proc. Microw. Antennas Propag. 144, 354 (1997)

    Article  Google Scholar 

  22. Ansari, J.A., Brij Ram, R.: Analysis of broad band U-slot microstrip patch antenna. Microw. Opt. Technol. Lett. 50, 1069–1073 (2008)

    Article  Google Scholar 

  23. Targonski, S.D., Pozar, D.M.: Design of wideband circularly polarized aperture-coupled microstrip antennas. IEEE Trans. Antennas Propag. 41, 214–220 (1993)

    Article  Google Scholar 

  24. Croq, F., Papiernik, A., Brachat, P.: Wideband aperture coupled microstrip subarray. In: International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s, vol. 3, pp. 1128–1131. IEEE (1990)

    Google Scholar 

  25. Liu, N.-W., Zhu, L., Choi, W.-W., Zhang, X.: A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance. IEEE Trans. Antennas Propag. 65, 1055–1062 (2017)

    Article  MathSciNet  Google Scholar 

  26. Croq, F., Papiernik, A.: Stacked slot-coupled printed antenna. IEEE Microw. Guid. Wave Lett. 1, 288–290 (1991)

    Article  Google Scholar 

  27. Liu, N.-W., Zhu, L., Choi, W.-W., Zhang, J.-D.: A novel differential-fed patch antenna on stepped-impedance resonator with enhanced bandwidth under dual-resonance. IEEE Trans. Antennas Propag. 64, 4618–4625 (2016)

    Article  Google Scholar 

  28. Liu, J., Xue, Q.: Broadband long rectangular patch antenna with high gain and vertical polarization. IEEE Trans. Antennas Propag. 61, 539–546 (2013)

    Article  Google Scholar 

  29. Liu, J., Xue, Q., Wong, H., Lai, H.W., Long, Y.: Design and analysis of a low-profile and broadband microstrip monopolar patch antenna. IEEE Trans. Antennas Propag. 61, 11–18 (2013)

    Article  Google Scholar 

  30. Wong, H., So, K.K., Gao, X.: Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications. IEEE Trans. Veh. Technol. 65, 1130–1136 (2016)

    Article  Google Scholar 

  31. Xiao, S., Wang, B.-Z., Shao, W., Zhang, Y.: Bandwidth-enhancing ultralow-profile compact patch antenna. IEEE Trans. Antennas Propag. 53, 3443–3447 (2005)

    Article  Google Scholar 

  32. Yang, H.W., Yang, Z.K., Liu, J.X., Li, A.P., You, X.: A novel DGS microstrip antenna simulated by FDTD. Optik (Stuttg). 124, 2277–2280 (2013)

    Article  Google Scholar 

  33. Khandelwal, M.K., Kanaujia, B.K., Dwari, S., Kumar, S., Gautam, A.K.: Analysis and design of dual band compact stacked microstrip patch antenna with defected ground structure for WLAN/WiMax applications. AEUE Int. J. Electron. Commun. (2014)

    Google Scholar 

  34. Khandelwal, M.K., Kanaujia, B.K., Dwari, S., Kumar, S., Gautam, A.K.: Analysis and design of wide band microstrip-line-fed antenna with defected ground structure for Ku band applications. AEUE Int. J. Electron. Commun. (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divesh Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittal, D., Dhillon, A.S., Nag, A., Bargota, R. (2019). High Gain and Highly Directive Microstrip Patch Antenna for Radar and Satellite Communication. In: Satapathy, S., Joshi, A. (eds) Information and Communication Technology for Intelligent Systems . Smart Innovation, Systems and Technologies, vol 107. Springer, Singapore. https://doi.org/10.1007/978-981-13-1747-7_42

Download citation

Publish with us

Policies and ethics