Skip to main content

Heuristic and Bio-inspired Neural Network Model

  • Chapter
  • First Online:
Electronic Nose: Algorithmic Challenges
  • 627 Accesses

Abstract

E-nose technology for detecting indoor harmful gases and concentration estimation of harmful gases and estimating the concentration become feasible by using a multi-sensor system. The estimation accuracy in actual application is concerned too much by manufacturers and researchers. This chapter analyzes the application of different bio-inspired and heuristic techniques to improve the concentration estimation in experimental electronic nose application. In this chapter, seven different particle swarm optimization models are studied including six models used for numerical function optimization, and a novel hybrid model of particle swarm optimization and adaptive genetic algorithm, for optimizing back-propagation multilayer perceptron neural network. We present the performance of a particle swarm optimization technique, an adaptive genetic strategy, and a back-propagation artificial neural network approach to perform concentration estimation of chemical gases and improve the intelligence of an E-nose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.E. Haugen, K. Kvaal, Electronic nose and artificial neural network. Meat Sci. 49, S273–S286 (1998)

    Article  Google Scholar 

  2. L. Carmel, N. Sever, D. Lancet, D. Harel, An e-nose algorithm for identifying chemicals and determining their concentration. Sens. Actuators B 93, 77–83 (2003)

    Article  Google Scholar 

  3. M.S. Simon, D. James, Z. Ali, Data analysis for electronic nose systems. Microchim. Acta 156, 183–207 (2007)

    Google Scholar 

  4. J.W. Gardner, P.N. Bartlett, Electronic Noses: Principles and Applications (Oxford University Press, Oxford, 1999)

    Google Scholar 

  5. P.C. Jurs, G.A. Bakken, H.F. McClelland, Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100, 2649–2678 (2000)

    Article  Google Scholar 

  6. R. Gutierrez-Osuna, Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2(3), 189–202 (2002)

    Article  Google Scholar 

  7. G.C. Green, A.D.C. Chan, H.H. Dan, M. Lin, Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension. Sens. Actuators B 152, 21–28 (2011)

    Article  Google Scholar 

  8. C.H. Shih, Y.J. Lin, K.F. Lee, P.Y. Chien, P. Drake, Real-time electronic nose based pathogen detection for respiratory intensive care patients. Sens. Actuators B 148, 153–157 (2010)

    Article  Google Scholar 

  9. C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont, T. Kerdcharoen, Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys. Sens. Actuators B 147, 392–399 (2010)

    Article  Google Scholar 

  10. B.A. Botre, D.C. Gharpure, A.D. Shaligram, Embedded electronic nose and supporting software tool for its parameter optimization. Sens. Actuators B 146, 453–459 (2010)

    Article  Google Scholar 

  11. P. Wang, T. Yi, A novel method for diabetes diagnosis based on electronic nose. Biosens. Bioelectron. 12(9–10), 1031–1036 (1997)

    Google Scholar 

  12. P. Wang, J. Xie, A novel recognition method for electronic nose using artificial neural network and fuzzy recognition. Sens. Actuators B: Chem. 37(3), 169–174 (1996)

    Google Scholar 

  13. J.R. Zhang, J. Zhang, A hybrid particle swarm optimization back-propagation algorithm for feed-forward neural network training. Appl. Math. Comput. 185, 1026–1037 (2007)

    MATH  Google Scholar 

  14. M. Gori, A. Tesi, On the problem of local minima in back-propagation, in IEEE Transactions on Pattern Analysis and Machine Intelligence (1992), pp. 76–86

    Google Scholar 

  15. V. Maniezzo, Genetic evolution of the topology and weight distribution of neural networks neural networks. IEEE Trans. 5(1), 39–53 (2002)

    Google Scholar 

  16. J.N.D. Gupta, R.S. Sexton, Comparing back-propagation with a genetic algorithm for neural network training. Omega 27(6), 679–684 (1999)

    Article  Google Scholar 

  17. C.F. Juang, Y.C. Liou, On the hybrid of genetic algorithm and particle swarm optimization for evolving recurrent neural network, in Proceedings of IEEE International Joint Conference on Neural Networks, 2005

    Google Scholar 

  18. R.S. Sexton, J.N.D. Gupta, Comparative evaluation of genetic algorithm and back-propagation for training neural networks. Inf. Sci. 129(1–4), 45–59 (2000)

    Article  Google Scholar 

  19. M.J. Polo-Corpa, S. Salcedo-Sanz, A.M. Perez-Bellido, P. Lopez-Espi, R. Benavente, E. Perez, Curve fitting using heuristics and bio-inspired optimization algorithms for experimental data processing in chemistry. Chemometr. Intell. Lab. Syst. 96, 34–42 (2009)

    Article  Google Scholar 

  20. J. Kennedy, R.C. Eberhart, Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995)

    Article  Google Scholar 

  21. R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization. IEEE. Evol. Comput. 1, 84–88 (2002)

    Google Scholar 

  22. J. Riget, J.S. Vesterstrm, A diversity-guided particle swarm optimizer-the ARPSO. Dept. Comput. Tech. Rep 2, 2002 (2002)

    Google Scholar 

  23. W. Jiang, Y. Zhang, A Particle swarm optimization algorithm based on doffision-repulsion and application to portfolio selection. IEEE Inter. Sym. Info. Sci. Eng. (2008)

    Google Scholar 

  24. B. Niu, Y. Zhu, An improved particle swarm optimization based on bacterial Chemotaxis. IEEE, Intell. Control Autom. 1, 3193–3197 (2006)

    Google Scholar 

  25. C.H. Hsu, W.J. Shyr, K.H. Kuo, Optimizing multiple interference cancellations of linear phase array based on particle swarm optimization. J. Inf. Hiding Multimedia Signal Process. 1, 292–300 (2010)

    Google Scholar 

  26. J.F. Chang, S.C. Chu, J.F. Roddick, J.S. Pan, A parallel particle swarm optimization algorithm with communication strategies. J. Inf. Sci. Eng. 21, 809–818 (2005)

    Google Scholar 

  27. M.F. Horng, Y.T. Chen, S.C. Chu, J.S. Pan, B.Y. Liao, An extensible particle swarm optimization for energy effective cluster management of underwater sensor networks, ICCCI2010. LNAI 6421, 109–116 (2010)

    Google Scholar 

  28. R.J. Kuo, L.M. Lin, Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. Decis. Support Syst. 49, 451–462 (2010)

    Article  Google Scholar 

  29. J. Horn, N. Nafpliotis, An enriched Pareto genetic algorithm for multi-objective optimization, in IEEE, 2002

    Google Scholar 

  30. K.A. DeJong, An analysis of the behavior of a class of genetic adaptive system (1975)

    Google Scholar 

  31. D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, 1989

    Google Scholar 

  32. D. Ballabio, M. Vasighi, V. Consonni, M.K. Zareh, Genetic algorithms for architecture optimisation of counter-propagation artificial neural networks. Chemometr. Intell. Lab. Syst. 105, 56–64 (2011)

    Article  Google Scholar 

  33. W. Wu, J. Wang, M.S. Cheng, Z.X. Li, Convergence analysis of online gradient method for BP neural networks. Neural Networks 24, 91–98 (2011)

    Article  Google Scholar 

  34. O. Kisi, Multi-layer perceptrons with levenberg-marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 49(6), 1025–1040 (2004)

    Article  Google Scholar 

  35. J. Getino, M.C. Horrillo, J. Gutiérrez, L. Arés, J.I. Robla, C. García, I. Sayago, Analysis of VOCs with a tin oxide sensor array. Sens. Actuators B 43, 200–205 (1997)

    Article  Google Scholar 

  36. S. de Jong, SIMPLS: an alternative approach to partial least squares regression. Chemometr. Intell. Lab. Syst. 18, 251–263 (1993)

    Article  Google Scholar 

  37. H. Zhou, M.L. Homer, A.V. Shevade, M.A. Ryan, Nonlinear least-squares based on method for identifying and quantifying single and mixed contaminants in air with an electronic nose. Sensors 6, 1–18 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Heuristic and Bio-inspired Neural Network Model. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics