Skip to main content

Leakage Monitoring in Inflatable Space Antennas: A Perspective to Sensitive Detection of Helium and Nitrogen Gases

  • Chapter
  • First Online:
Sensors for Automotive and Aerospace Applications

Abstract

Inflatable space structures have become an important part of space explorations due to their lightweight, simpler design, low cost, and fewer parts. These structures include antennas, solar arrays, solar concentrators, reflectors, etc. These structures are made of flexible polymers which can be folded and easily carried with spacecraft due to their small volume and weight. Structures, when reaching their destination, are inflated through internal pressurization to achieve desired structural integrity. In space, these structures are subjected to very harsh environment such as high radiation levels, structural vibrations, and micrometeoroid bombardments. The polymeric material used to fabricate these structures is susceptible to degradation under these harsh conditions. These structures are prone to lose their structural integrity over long-term degradation of the material. The most common problem associated with inflated space antennas is leakage of inflated gas. Hence, the health monitoring of these structures becomes crucial to avoid structural failure due to leakages which may cause loss of information, accuracy, and money. Gas sensors are used to detect leakages in these structures. A mixture of helium (He) and nitrogen (N2) is used as inflating gas in space antennas. Helium is the lightest gas after hydrogen and has chemically inert, nonflammable nature which makes it an ideal inflating gas. However, the detection of He leakages is very difficult because of its nonreactive behavior with chemical species. Metal oxide based semiconducting (MOSs) materials are widely used sensing element for detection of various gases. Although it is very difficult to find out He gas leakages, vanadium pentoxide (V2O5) can detect even a small concentration of He through resistive changes. In this chapter, we will discuss the requirement of leakage monitoring system for inflatable space antennas and He gas sensing properties of V2O5 semiconducting material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, P.S., Bhatt, G., Bhattacharya, S. (2019). Leakage Monitoring in Inflatable Space Antennas: A Perspective to Sensitive Detection of Helium and Nitrogen Gases. In: Bhattacharya, S., Agarwal, A., Prakash, O., Singh, S. (eds) Sensors for Automotive and Aerospace Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3290-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3290-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3289-0

  • Online ISBN: 978-981-13-3290-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics