Skip to main content

Multifractal Analysis of Electromyography Data

  • Chapter
  • First Online:
Multifractals and Chronic Diseases of the Central Nervous System

Abstract

Myopathies (MYO) are a group of disorders where malfunction of muscle fibers occurs for a number of reasons which results in a muscular dysfunction manifesting weakness of muscles. Neuropathies are also disorders of the peripheral nervous system for which information transmission from brain and spinal cord to every other part of the body is disturbed. For diagnosis and characterization of motor neuron disease (MND), myopathy, and neuropathy, the electromyography (EMG) is extensively used since EMG signal can be analyzed to obtain information in regard to degree of disorder. The contents of the chapter deal with the details of a rigorous and robust non-linear technique, namely, multifractal detrended fluctuation analysis, to assess the multifractal property of EMG signals of patients with neuromuscular disorders and also use of two quantitative parameters, the multifractal width, and the auto-correlation exponent as biomarker for diagnosis and prognosis of both MYO and NEURO and even for early detection of MND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya UR, Ng EYK, Swapna G, Michelle YSL (2011) Classification of normal, neuropathic, and myopathic electromyography signals using non-linear dynamics method. J Med Imaging Health Inform 1:375–380

    Article  Google Scholar 

  • Alamedine D, Khalil M, Marque C (2013) Comparison of different EHG feature selection methods for the detection of preterm labo. Comput Math Method Med 2013:585–593

    Article  Google Scholar 

  • Alkan A, Gunay M (2012) Identification of EMG signals using discriminant analysis and SVM classifier. Expert Syst Appl 39:44–47

    Article  Google Scholar 

  • Ancillao A, Galli M, Rigoldi C, Albertini G (2014) Linear correlation between fractal dimension of surface EMG signal from rectus femoris and height of vertical jump. Chaos Solitons Fractals 66:120–126

    Article  Google Scholar 

  • Anmuth CJ, Goldberg G, Mayer NH (1994) Fractal dimension of EMG signals recorded with surface electrodes during isometric contractions is linearly correlated with muscle activation. Muscle Nerve 17:953–954

    Article  CAS  PubMed  Google Scholar 

  • Arjunan SP, Kumar DK (2007). Fractal theory based non-linear analysis of SEMG. In: IEEE 3rd international conference on Intelligent Sensors, Sensor Networks and Information, 3–6 December 2007, pp 545–548

    Google Scholar 

  • Arjunan SP, Kumar DK (2014) Computation of fractal features based on the fractal analysis of surface electromyogram to estimate force of contraction of different muscles. Comput Methods Biomech Biomed Engin 17:210–216

    Article  Google Scholar 

  • Artameeyanant P, Sultornsanee S, Chamnongthai K (2016) An EMG-based feature extraction method using a normalized weight vertical visibility algorithm for myopathy and neuropathy detection. Springer Plus 5:2101

    Article  PubMed  PubMed Central  Google Scholar 

  • Artemiadis PK, Kyriakopoulos KJ (2007) EMG-based teleoperation of a robot arm using low-dimensional representation. In: Proceedings of IEEE/RSJ international conference on Intelligent Robots and Systems, 29 October – 2 November 2007, pp 489–495

    Google Scholar 

  • Artemiadis PK, Kyriakopoulos KJ (2010) EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans Robot 26:393–398

    Article  Google Scholar 

  • Artemiadis PK, Kyriakopoulos KJ (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Trans Syst Man Cybern 41:53–63

    Article  Google Scholar 

  • Ashkenazy Y, Havlin S, Ivanov PC, Peng CK, Frohlinde VS et al (2003a) Magnitude and sign scaling in power-law correlated time-series. Physica A 323:19–41

    Article  Google Scholar 

  • Ashkenazy Y, Baker DR, Gildor H, Havlin S (2003b) Non-linearity and multifractality of climate change in the past 420,000 years. Geophys Res Lett 30:2146–2149

    Article  Google Scholar 

  • Basmajian J, De Luca CJ (1985) Muscles alive: their functions revealed by electromyography, 5th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bue BD, Merényi E, Killian JM (2013) Classification and diagnosis of myopathy from EMG signals. In: 2nd workshop on data mining for medicine and healthcare, in conjunction with the 13th SIAM international conference on Data Mining (SDM-DMMH), Austin, TX, May 2013

    Google Scholar 

  • Chang YC, Chang S (2002) A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion. IEEE Trans Signal Process 50:554–559

    Article  Google Scholar 

  • Chang GC, Kang WJ, Luh JJ, Cheng CK, Lai JS et al (1996) Real-time implementation of electromyogram pattern recognition as a control command of man–machine interface. Med Eng Phys 18:529–537

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Mao ST, Hu SJ, Lin WC, Cheng CL (2000) Studies of detrusorsphincter synergia and dyssynergia during micturition in rats via fractional Brownian motion. IEEE Trans Biomed Eng 47:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Hu SJ, Lin WC (2004) Fractal dynamics and synchronization of rhythms in urodynamics of female Wistar rats. J Neurosci Methods 139:271–279

    Article  PubMed  Google Scholar 

  • Chang S, Li SJ, Chiang MJ, Hu SJ, Hsyu MC (2007) Fractal dimension estimation via spectral distribution function and its application to physiological signals. IEEE Trans Biomed Eng 54:1895–1898

    Article  PubMed  Google Scholar 

  • Chen B, Wang N (2000) Determining EMG embedding and fractal dimensions and its application. In: Proceedings of the 22nd annual EMBS international conference, Chicago IL, USA, pp 1341–1344

    Google Scholar 

  • Chen W, Wang Z, Ren X (2006) Characterization of surface EMG signals using improved approximate entropy. J Zhejiang Univ Sci B 7:844–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhabra A, Jensen RV (1989) Direct determination of the f(α) singularity spectrum. Phys Rev Lett 62:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Dang KTQ, Minh HL, Thanh HN, Van TV (2012) Analyzing surface EMG signals to determine relationship between jaw imbalance and arm strength loss. Biomed Eng Online 11:55

    Article  Google Scholar 

  • Diab A, El-Merhie A, El-Halabi N, Khoder L (2010) Classification of uterine EMG signals using supervised classification method. Biomed Sci Eng 3:837–842

    Article  Google Scholar 

  • Diab A, Hassan M, Marque C, Karlsson B (2012) Quantitative performance analysis of four methods of evaluating signal non-linearity: application to uterine EMG signals. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 1045–1048

    Google Scholar 

  • Easwaramoorthy D, Uthayakumar R (2011) Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. J Comput Sci 2:31–38

    Article  Google Scholar 

  • Eke A, Herman P, Kocsis L, Kozak LR (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23:1–38

    Article  Google Scholar 

  • Falconer K (2003) Fractal geometry. Wiley, New York, p 337

    Book  Google Scholar 

  • Farina D, Negro F (2012) Accessing the neural drive to muscle and translation to neurorehabilitation technologies. IEEE Rev Biomed Eng 5:3–14

    Article  PubMed  Google Scholar 

  • Farina D, Merletti R, Nazzaro M, Caruso I (2001) Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng Med Biol Mag 20:62–71

    Article  CAS  PubMed  Google Scholar 

  • Fele GF, Kavsek G, Novak ZA, Jager F (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and preterm delivery groups. Med Biol Eng Comput 46:911–922

    Article  Google Scholar 

  • Fox CG (1989) Empirically derived relationships between fractal dimension and power law form frequency spectra. Fractals Geophy (Part Pure Appl Geophy) 131:211–239

    Article  Google Scholar 

  • Fuglsang-Frederiksen A (2000) The utility of interference pattern analysis. Muscle Nerve 23:18–36

    Article  CAS  PubMed  Google Scholar 

  • Gabriel DA, Kamen G (2009) Experimental and modeling investigation of spectral compression of biceps brachii SEMG activity with increasing force levels. J Electromyogr Kinesiol 19:437–448

    Article  PubMed  Google Scholar 

  • Gang W, Xiao-Mei R, Lei L, Zhi-Zhong W (2007) Multifractal analysis of surface EMG signals for assessing muscle fatigue during static contractions. J Zheijang Univ Sci A 8:910–915

    Article  Google Scholar 

  • Gerdle B, Eriksson N (1990) The behavior of mean power frequency of the surface electromyogram in Biceps brachii with increasing force and during fatigue with special regard to electrode distance. J Electromyogr Neurophysiol 30:483–489

    CAS  Google Scholar 

  • Ghosh D, Dutta S, Chakraborty S, Samanta S (2017) Chaos based quantitative electro-diagnostic marker for diagnosis of myopathy, neuropathy and motor neuron disease. J Neurol Neurosci 8:226

    Article  Google Scholar 

  • Gitiaux C, Chemaly N, Quijano-Roy S, Barnerias C, Desguerre I et al (2016) Motor neuropathy contributes to crouching in patients with Dravet syndrome. Neurology 87:277–281

    Article  PubMed  Google Scholar 

  • Gitter JA, Czerniecki MJ (1995) Fractal analysis of electromyographic interference pattern. J Neurosci Methods 58:103–108

    Article  CAS  PubMed  Google Scholar 

  • Goen A (2014) Classification of EMG signals for assessment of neuromuscular disorders. Int J Electron Electr Eng 2:242–248

    Article  Google Scholar 

  • Goge A, Chan A (2004) Investigating classification parameters for continuous myoelectrically controlled prostheses. In: Proceedings of the 28th conference of the Canadian Medical & Biological Engineering Society, pp 141–144

    Google Scholar 

  • Gokgoz E, Subasi A (2015) Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed Signal Process Control 18:138–144

    Article  Google Scholar 

  • Gupta V, Suryanarayanan S, Reddy NP (1997) Fractal analysis of surface EMG signals from the biceps. Int J Med Inform 45:185–192

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, Terrien J, Karlsson C (2007) Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals. Med Eng Phys 33:980–986

    Article  Google Scholar 

  • Hassan M, Alexandersson M, Terrien J, Muszynski C, Marque C (2012) Better pregnancy monitoring using non-linear correlation analysis of external uterine electromyography. IEEE Trans Biomed Eng 60:1160–1166

    Article  PubMed  Google Scholar 

  • Hu X, Wang ZZ, Ren XM (2005) Classification of surface EMG signal with fractal dimension. J Zhejiang Univ Sci B 6:844–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang XY, Schmitt FG, Hermand JP, Gagne Y, Lu ZM (2011) Arbitrary order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders. Phys Rev E 84:016208–016213

    Article  CAS  Google Scholar 

  • Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82–94

    Article  CAS  PubMed  Google Scholar 

  • Janjarasjitt S (2014) Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data. J Zhejiang Univ Sci C 15:1147–1153

    Article  Google Scholar 

  • Jezewski J, Horoba K, Matonia A, Wrobel J (2005) Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiol Meas 26:753–767

    Article  PubMed  Google Scholar 

  • Kang WJ, Cheng CK, Lai JS, Shiu JR, Kuo TS (1996) A comparative analysis of various EMG pattern recognition methods. Med Eng Phys 18:390–395

    Article  CAS  PubMed  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny BE, Havlin S, Bunde A et al (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316:87–114

    Article  Google Scholar 

  • Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Bunde EK et al (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A 330:240–245

    Article  Google Scholar 

  • Katz M (1988) Fractals and the analysis of waveforms. Comput Biol Med 18:145–156

    Article  CAS  PubMed  Google Scholar 

  • Khalil M, Duchene J (2007) Uterine EMG analysis: a dynamic approach for change detection and classification. IEEE Trans Biomed Eng 47:748–756

    Article  Google Scholar 

  • Kincaid JC (2015) Nerve conduction studies and needle EMG. In: Nerves and nerve injuries, vol 1. Elsevier, London, pp 125–145

    Google Scholar 

  • Koike Y, Kawato M (1995) Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model. Biol Cybern 73:291–300

    Article  CAS  PubMed  Google Scholar 

  • Kupa EJ, Roy SH, Kandarian SC, de Luca CJ (1995) Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol 79:23–32

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Meng G (2012) Non-linear analysis of surface EMG signals. In: Naik GR (ed) Computational intelligence in electromyography analysis – a perspective on current applications and future challenges. Intech Open, pp 119–174

    Google Scholar 

  • Lima CAM, Coelho A, Madeo RCB, Peres SM (2016) Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Comput Appl 27:791–804

    Article  Google Scholar 

  • Lindstrom L, Kadefors R, Petersen I (1977) An electromyographic index for localized muscle fatigue. J Appl Physiol Respir Environ Exerc Physiol 43:750–754

    CAS  PubMed  Google Scholar 

  • Lucovnik M, Maner LW, Chambliss LR, Blumrick R, Balducci R et al (2011) Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 204:228–2e1

    Article  PubMed  Google Scholar 

  • Marri K, Swaminathan R (2015a) Analyzing origin of multifractality of surface electromyography signals in dynamic contractions. J Nanotechnol Eng Med 6:031002–031001

    Article  Google Scholar 

  • Marri K, Swaminathan R (2015b) Identification of onset of fatigue in biceps Brachii muscles using surface EMG and multifractal DMA alogrithm. Biomed Sci Instrum 51:107–114

    PubMed  Google Scholar 

  • Marri K, Swaminathan R (2016) Analysis of biceps Brachii muscles in dynamic contraction using sEMG signals and multifractal DMA algorithm. Int J Signal Process Syst 4:79–85

    Google Scholar 

  • McArthur L, Mackenzie S, Boland J (2013) Multifractal analysis of wind farm power output. In: 20th international Congress on Modeling and Simulation (MODSIM 2013), Adelaide, Australia, 1–6 December 2013, pp 420–426

    Google Scholar 

  • Mishra VK, Bajaj V, Kumar A, Singh GK (2016) Analysis of ALS and normal EMG signals based on empirical mode decomposition. IET Sci Measurement Technol 10:963–971

    Article  Google Scholar 

  • Monsifrot J, Carpentier EL, Aoustin Y (2004) Sequential decoding of intramuscular EMG signals via estimation of a Markov model. IEEE Trans Neural Syst Rehabil Eng 22:1030–1038

    Article  Google Scholar 

  • Moreside JM, Quirk DA, Hubley-Kozey CL (2014) Temporal patterns of the trunk muscles remain altered in a low back-injured population despite subjective reports of recovery. Arch Phys Med Rehabil 95:686–698

    Article  PubMed  Google Scholar 

  • Naeem SM, Seddik AF, Eldosoky MA (2014) New technique based on uterine electromyography non-linearity for preterm delivery detection. J Eng Technol Res 6:107–114

    Google Scholar 

  • Naik G, Kumar D, Arjunan S (2009) Use of SEMG in identification of low level muscle activities: features based on ICA and fractal dimension. Conf Proc IEEE Eng Med Biol Soc 2009:364–367

    Google Scholar 

  • Naik GR, Selvan SE, Nguyen HT (2016) Single-channel EMG classification with ensemble-empirical-mode-decomposition- based ICA for diagnosing neuromuscular disorders. IEEE Trans Neural Syst Rehabil Eng 24:734–743

    Article  PubMed  Google Scholar 

  • Najarian K, Splinter R (2012) Biomedical signal and image processing, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton/London/New York

    Google Scholar 

  • Nikolic M, Krarup C (2011) EMGTools, an adaptive and versatile tool for detailed EMG analysis. IEEE Trans Biomed Eng 58:2707–2718

    Article  PubMed  Google Scholar 

  • Nussbaum MA, Yassierli (2003) Assessment of localized muscle fatigue furing low-moderate static contractions using the fractal dimension of EMG. In: Proceedings of the XVth triennial Congress of the International Ergonomics Association, Seoul, Korea, August 25–29

    Google Scholar 

  • Oswiecimka P, Kwapien J, Drozdz S (2006) Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rev E 74:06103–06137

    Article  CAS  Google Scholar 

  • Patidar M, Jain N, Parikh A (2013) Classification of normal and myopathy EMG signals using BP neural network. Int J Comput Appl 69:0975–8887

    Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE et al (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  CAS  Google Scholar 

  • Phinyomark A, Phothisonothai M, Limsakul C, Phukpattaranont P (2009) Detrended fluctuation analysis of electromyography signal to identify hand movement. In: Proceedings of the second Biomedical Engineering international conference, Phuket, Thailand, August 13–14, 2009, pp 324–329

    Google Scholar 

  • Phinyomark A, Phothisonothai M, Limsakul C, Phukpattaranont P (2010) Effect of trends on detrended fluctuation analysis for surface electromyography (EMG) signal. In: The eighth PSU Engineering conference 22–23 April 2010, pp 333–338

    Google Scholar 

  • Phinyomark A, Phukpattaranont P, Limsakul C (2012) Fractal analysis features for weak and single-channel upper-limb EMG signals. Expert Syst Appl 39:11156–11163

    Article  Google Scholar 

  • Ravier P, Buttelli O, Jennane R, Couratier P (2005) An EMG. Fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions. J Electromyogr Kinesiol 15:210–221

    Article  PubMed  Google Scholar 

  • Ren P, Yao S, Li J, Valdes-Sosa PA, Kendrick KM (2015) Improved prediction of preterm delivery using empirical mode decomposition analysis of uterine electromyography signals. PLoS One 10:e0132116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riillo F, Quitadamo L, Cavrinia F, Gruppioni E, Pinto C et al (2014) Optimization of EMG-based hand gesture recognition: supervised vs. unsupervised data preprocessing on healthy subjects and transradial amputees. Biomed Signal Process Control 14:117–125

    Article  Google Scholar 

  • Ryu W, Han B, Kim J (2008) Continuous position control of 1 DOF manipulator using EMG signals. In: Proceeding in 3rd international conference on Convergence and Hybrid Information Technology, 11–13 November, 2008, pp 870–874

    Google Scholar 

  • Sarkar M, Leong TY (2003) Characterization of medical time series using fuzzy similarity-based fractal dimensions. Artif Intell Med 27:201–222

    Article  PubMed  Google Scholar 

  • Serrano E, Figliola A (2009) Wavelet leaders: a new method to estimate the multifractal singularity spectra. Physica A 388:2793–2805

    Article  Google Scholar 

  • Sharma RR, Chandra P, Pachori RB (2017) Electromyogram signal analysis using eigenvalue decomposition of the Hankel Matrix. In: International conference on machine intelligence and signal processing at: Indian Institute of Technology Indore, Indore, India, November, 2017

    Google Scholar 

  • Shields R (2006) Fractal dimension of the EMG interference pattern: preliminary observations and comparisons with other measures of interference pattern analysis. J Clin Neurophysiol 10:117–118

    Google Scholar 

  • Shimizu Y, Thurner S, Ehrenberger K (2002) Multifractal spectra as a measure of complexity in human posture. Fractals 10:103–116

    Article  Google Scholar 

  • Smith RJ, Tenore F, Huberdeau D, Etienne-Cummings R, Thakor NV (2008) Continuous decoding of finger position from surface EMG signals for the control of powered prostheses. In: Proceedings of IEEE 30th annual international Conference on Engineering in Medicine and Biology Society, August 2008, pp 197–200

    Google Scholar 

  • Stulen FB, De Luca CJ (1981) Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans Biomed Eng 28:515–523

    Article  CAS  PubMed  Google Scholar 

  • Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43:576–586

    Article  PubMed  Google Scholar 

  • Talebinejad M, Chan ADC, Miri A, Dansereau RM (2009) Fractal analysis of surface electromyography signals: a novel power spectrum-based method. J Electromyogr Kinesiol 19:840–850

    Article  PubMed  Google Scholar 

  • Trojaborg W (1987) Motor unit disorders and myopathies. In: Halliday MA, Butler RJ, Paul R (eds) A textbook book of clinical neurophysiology. Wiley, New York, pp 417–438

    Google Scholar 

  • Vishnu RS, Shalu GK (2015) Identification of surface EMG – angular velocity model using artificial neural network. Int J Adv Res Electr Electron Instrument Eng 4:7201–7208

    Article  Google Scholar 

  • Wang G, Ren X, Li L, Wang Z (2007) Multifractal analysis of surface EMG signals for assessing muscle fatigue during static contractions. J Zheijang Univ Sci A 8:910–915

    Article  Google Scholar 

  • Webber CL Jr, Schmidt MA, Walsh JM (1995) Influence of isometric loading on biceps EMG dynamics as assessed by linear and non-linear tools. J Appl Physiol 78:814–822

    Article  PubMed  Google Scholar 

  • Weiss JM, Weiss LD, Silver JK (2015) Neuromuscular junction disorders, easy EMG: a guide to performing nerve conduction studies and electromyography. Elsevier, London. ISBN:978-0-323-28664-0

    Google Scholar 

  • Xu Z, Xiao S (1997) Fractal dimension of surface EMG and its determinants. In: Proceedings of 19th international conference – IEEE/EMBS, Chicago, IL, USA, pp 1570–1573

    Google Scholar 

  • Zhao J, Jiang L, Cai H, Liu H (2007) EMG pattern recognition method for prosthetic hand based on wavelet transform and sample entropy. Control Decis 22:927–930

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, D., Samanta, S., Chakraborty, S. (2019). Multifractal Analysis of Electromyography Data. In: Multifractals and Chronic Diseases of the Central Nervous System. Springer, Singapore. https://doi.org/10.1007/978-981-13-3552-5_4

Download citation

Publish with us

Policies and ethics