Skip to main content

An SDN-Based Secure Mobility Model for UAV-Ground Communications

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 971))

Included in the following conference series:

Abstract

Multi-UAV collaborative networks provide with the opportunity to exploit civil, chemical, biological, radiological, nuclear and geographical reconnaissance, survey, management, and control. For the collaborative network formation, coverage is of prime paramountcy. Alongside coverage, possession of information and communication security is withal a major challenge. The coverage quandary can be resolved by a perspicacious selection of UAV waypoints. But the security paradigm which can be an effect of faulty node, intrusion or even choice of erroneous communication channels needs to be taken care of through efficacious strategies. Consequently, both a specialized UAV mobility model and a security mechanism are required in order to establish prosperous collaborative networks. In this article, an SDN-based secure mobility model is proposed which takes into account the topological density and restricts the UAV and ground node (Wireless Sensor Networks (WSNs)) transmissions to authenticity. Significant gains are observed for throughput, coverage, and latency by establishing a simulated network between multiple UAVs and WSN motes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The detailed procedure for authentication and verification will be presented in our future reports.

References

  1. Bunse, C., Plotz, S.: Security analysis of drone communication protocols. In: Payer, M., Rashid, A., Such, J.M. (eds.) ESSoS 2018. LNCS, vol. 10953, pp. 96–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94496-8_7

    Chapter  Google Scholar 

  2. Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 17(3), 2109–2121 (2018)

    Article  Google Scholar 

  3. Shi, W., Zhou, H., Li, J., Xu, W., Zhang, N., Shen, X.: Drone assisted vehicular networks: architecture, challenges and opportunities. IEEE Network (2018)

    Google Scholar 

  4. Naqvi, S.A.R., Hassan, S.A., Pervaiz, H., Ni, Q.: Drone-aided communication as a key enabler for 5G and resilient public safety networks. IEEE Commun. Mag. 56(1), 36–42 (2018)

    Article  Google Scholar 

  5. Sharma, V., Kumar, R.: A cooperative network framework for multi-UAV guided ground ad hoc networks. J. Intell. Robot. Syst. 77(3–4), 629–652 (2015)

    Article  Google Scholar 

  6. Sekander, S., Tabassum, H., Hossain, E.: Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun. Mag. 56(3), 96–103 (2018)

    Article  Google Scholar 

  7. Dey, V., Pudi, V., Chattopadhyay, A., Elovici, Y.: Security vulnerabilities of unmanned aerial vehicles and countermeasures: an experimental study. In: VLSI Design, pp. 398–403. IEEE (2018)

    Google Scholar 

  8. Wu, Q., Liu, L., Zhang, R.: Fundamental tradeoffs in communication and trajectory design for UAV-enabled wireless network, arXiv preprint arXiv:1805.07038 (2018)

  9. Wang, W., Guan, X., Wang, B., Wang, Y.: A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Inf. Sci. 180(3), 399–413 (2010)

    Article  Google Scholar 

  10. Zhao, J., Gao, F., Kuang, L., Wu, Q., Jia, W.: Channel tracking with flight control system for UAV mmWave MIMO communications. IEEE Commun. Lett. 22, 1224–1227 (2018)

    Article  Google Scholar 

  11. Liu, L., Zhang, S., Zhang, R.: CoMP in the sky: UAV placement and movement optimization for multi-user communications, arXiv preprint arXiv:1802.10371 (2018)

  12. Yang, D., Wu, Q., Zeng, Y., Zhang, R.: Energy trade-off in ground-to-UAV communication via trajectory design. IEEE Trans. Veh. Technol. 67, 6721–6726 (2018)

    Google Scholar 

  13. Sharma, V., You, I., Kumar, R., Chauhan, V.: OFFRP: optimised fruit fly based routing protocol with congestion control for UAVs guided ad hoc networks. Int. J. Ad Hoc Ubiquit. Comput. 27(4), 233–255 (2018)

    Article  Google Scholar 

  14. Sharma, V., Bennis, M., Kumar, R.: UAV-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. 20(6), 1207–1210 (2016)

    Article  Google Scholar 

  15. Sharma, V., Reina, D., Kumar, R.: HMADSO: a novel hill Myna and desert sparrow optimization algorithm for cooperative rendezvous and task allocation in FANETS. Soft Comput. 22(18), 6191–6214 (2018)

    Article  Google Scholar 

  16. Grocholsky, B., Keller, J., Kumar, V., Pappas, G.: Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 13(3), 16–25 (2006)

    Article  Google Scholar 

  17. Ciobanu, R.-I., Reina, D., Dobre, C., Toral, S., Johnson, P.: JDER: a history-based forwarding scheme for delay tolerant networks using Jaccard distance and encountered ration. J. Netw. Comput. Appl. 40, 279–291 (2014)

    Article  Google Scholar 

  18. Chandhar, P., Danev, D., Larsson, E.G.: Massive MIMO as enabler for communications with drone swarms. In: Unmanned Aircraft Systems, pp. 347–354. IEEE (2016)

    Google Scholar 

  19. Ho, D.-T., Shimamoto, S.: Highly reliable communication protocol for WSN-UAV system employing TDMA and PFS scheme. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1320–1324. IEEE (2011)

    Google Scholar 

  20. Han, Z., Swindlehurst, A.L., Liu, K.R.: Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles. IEEE Trans. Veh. Technol. 58(7), 3533–3546 (2009)

    Article  Google Scholar 

  21. Han, Z., Swindlehurst, A.L., Liu, K.R.: Smart deployment/movement of unmanned air vehicle to improve connectivity in MANET. In: 2006 IEEE Wireless Communications and Networking Conference, WCNC 2006, vol. 1, pp. 252–257. IEEE (2006)

    Google Scholar 

  22. Taqieddin, E., Awad, F., Ahmad, H.: Location-aware and mobility-based performance optimization for wireless sensor networks. JoWUA 8(4), 37–59 (2017)

    Google Scholar 

  23. Azari, M.M., Rosas, F., Chen, K.-C., Pollin, S.: Ultra reliable UAV communication using altitude and cooperation diversity. IEEE Trans. Commun. 66(1), 330–344 (2018)

    Article  Google Scholar 

  24. Nguyen, M.-N., Nguyen, L.D., Duong, T.Q., Tuan, H.D.: Real-time optimal resource allocation for embedded UAV communication systems. IEEE Wirel. Commun. Lett. (2018). https://doi.org/10.1109/LWC.2018.2867775

  25. Liu, D., et al.: Self-organizing relay selection in UAV communication networks: A matching game perspective, arXiv preprint arXiv:1805.09257 (2018)

  26. Sharma, V., Kumar, R., Kumar, N.: DPTR: distributed priority tree-based routing protocol for FANETs. Comput. Commun. 122, 129–151 (2018)

    Article  Google Scholar 

  27. Sharma, V., Kumar, R.: Three-tier neural model for service provisioning over collaborative flying ad hoc networks. Neural Comput. Appl. 29(10), 837–856 (2018)

    Article  Google Scholar 

  28. Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutor. 11(4), 19–41 (2009)

    Article  Google Scholar 

  29. Valenza, F., Su, T., Spinoso, S., Lioy, A., Sisto, R., Vallini, M.: A formal approach for network security policy validation. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 8(1), 79–100 (2017)

    Google Scholar 

  30. Bhargava, B.K., Johnson, A.M., Munyengabe, G.I., Angin, P.: A systematic approach for attack analysis and mitigation in V2V networks. JoWUA 7(1), 79–96 (2016)

    Google Scholar 

  31. Secinti, G., Darian, P.B., Canberk, B., Chowdhury, K.R.: SDNs in the sky: robust end-to-end connectivity for aerial vehicular networks. IEEE Commun. Mag. 56, 16–21 (2018)

    Article  Google Scholar 

  32. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 30(14–15), 2826–2841 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

This paper was presented at the Workshop associated with the 12th International Conference on Provable Security, 25–28 October, 2018, Jeju, Rep. of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Sayeed, M.A., Sharma, V., You, I. (2019). An SDN-Based Secure Mobility Model for UAV-Ground Communications. In: You, I., Chen, HC., Sharma, V., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2017. Communications in Computer and Information Science, vol 971. Springer, Singapore. https://doi.org/10.1007/978-981-13-3732-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3732-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3731-4

  • Online ISBN: 978-981-13-3732-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics