Skip to main content

Application of Software in Predicting Thermal Behaviours of Solar Stills

  • Chapter
  • First Online:
Solar Desalination Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 881 Accesses

Abstract

Software plays a major role in analysis and simulation of solar stills. These simulation techniques are very much cheaper and time saving compared to the experimental analysis of a system. This chapter explains the different software used for the design and testing of various models of solar still. It also gives an overall idea of what type of software being used and its feasibility. Software like MATLAB, ANSYS and FLUENT have been taken into account here for modelling and development of various solar stills. Moreover, software such as SPSS is often used for statistical data analysis. All recent software have been selected and reviewed and the benefits explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area, m²

\(A_{\text{g}}\) :

Aspect ratio for glass A = L/H

C :

Vapour concentration of air, kg m−³

c :

Specific heat, J kg−1 °C−1

\(C_{p}\) :

Specific heat capacity at constant pressure, J kg−1 K−1

\(C_{\text{wg}}\) :

Specific heat of water and glass cover, J kg−1 °C−1

D :

Depth of water, cm

\(D_{\text{ag}}\) :

Diffusion coefficient of gas phase

\(d_{\text{w}}\) :

Depth of saline water, m

F :

Solar radiation absorption factor, dimensionless

G :

Irradiance, W m−2

g :

Solar flux

\(Gn\) :

Grashoff’s number

H :

Solar irradiation, kWh/m²

\(h\) :

Convection heat transfer coefficient, W m−2 K−1

\(h_{\text{glc}}\) :

Heat transfer coefficient of glass cover, W/m² K

\(h_{p}\) :

Convective radiative heat transfer coefficient from outer glass surface cover to ambient, W/m² K

\(I_{\text{t}}\) :

Tilt of incident solar radiation, W m−2

\(I_{\text{s}} (t)\) :

Solar radiation over the solar still glass cover, W/m²

\(K\) :

Thermal conductivity

Le :

Lewis number

\(L_{\text{v}}\) :

Latent heat of vaporization, J/kg

\(\dot{m}\) :

Specific mass, kg/m²

\(m^{\prime}_{\text{b}}\) :

Mass rate of brine, kg m−3

\(m^{\prime}_{\text{ev}}\) :

Produced mass rate of vapour, kg m−3

\(m_{\text{eva}}\) :

Mass for evaporation, kg

\(m_{\text{evap}}\) :

Rate of mass evaporation, m/s

\(M_{\text{gl}}\) :

Interphase momentum transfer, kg/m² s²

\(m_{\lg }\) :

Rate of interphase mass transfer, kg/m³

\(m^{\prime}_{\text{sw}}\) :

Mass rate for saline water, kg m−3

\(\dot{m}_{\text{wg}}\) :

Mass flow rate of water and glass cover, kg s−1

\(P\) :

Pressure, N/m²

\(P_{\text{ci}}\) :

Partial saturated vapour pressure at condensing cover temperature

\(P_{\text{d}}\) :

Calculated daily productivity, 1/m² day

\(Pr\) :

Prandtl number

\(P_{\text{v}}\) :

Partial saturated vapour pressure at water temperature

\(\dot{Q}\) :

Heat transfer rate, W

\(q_{\text{a}}\) :

Convective heat transfer, W

\(q_{\text{e,v}}\) :

Heat transfer per unit area per unit time

\(Q_{\lg }\) :

Energy transfer between liquid and gas phases

R :

Ratio of evaporator chamber volume to condenser chamber volume, dimensionless

\(r\) :

Volume fraction, dimensionless

Rd:

Radius of tubular solar still, m

Sc :

Schmidt number

T :

Temperature, °C

\(t\) :

Thickness, m

t a :

Average ambient temperature, °C

\(T_{\text{am}}\) :

Temperature ambient, °C

\(T_{\text{g}}\) :

Glass temperature, °C

\(T_{\text{gin}}\) :

Inner glass surface temperature, °C

\(T_{\text{gout}}\) :

Outer glass cover temperature, °C

\(T_{\text{v}}\) :

Water temperature, °C

U :

Side heat loss coefficient from basin to ambient, W m−2 K−1

\(u\) :

X component of velocity, m s−¹

\(U_{\text{eva}}\) :

Heat transfer coefficient for evaporation, W/m² K

\(V\) :

Velocity vector, m/s

\(v\) :

Y component of velocity, m s−¹

W :

Wind velocity, m/s

\(w\) :

Compressor power, w

\(X_{A}\) :

Mass fraction of liquid phase

\(Y_{A}\) :

Mass fraction of gas phase

\(y_{\text{b}}\) :

Concentration of salt in brine, mg l−1

\(y_{\text{sw}}\) :

Concentration of salts in feeding water, mg l−1

\(\beta\) :

Reflectivity

\(\gamma\) :

Thermal diffusivity of air, m² s−1

\(\lambda /\varphi\) :

Brine depth to frontal height, –

\(\varphi_{\text{g}}\) :

Latitude of glass cover, °

\(\varphi_{\text{w}}\) :

Latitude of water, °

\(\phi\) :

Glass inclination angle, °

\(\rho\) :

Density, kg/m³

\(\sigma\) :

Stefan–Boltzmann constant (\(5.67 \times 10^{ - 8} \;{\text{W}}\,{\text{m}}^{2} \,{\text{K}}^{ - 4}\))

\(\mu\) :

Viscosity, kg/m s

\(\chi\) :

Feed concentration factor

1:

Initial

a:

Air

B:

Base

b:

Direct beam of solar radiation

Bs:

Basin

c:

Convective

e:

Evaporative

eff:

Effective

ev:

Evaporator

f:

Refrigeration

g:

Glass

l:

Side loss

Liq:

Liquid

rad:

Radiative

\(v\) :

Water

References

  1. Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32(5):1505–1514

    Article  Google Scholar 

  2. Tiwari GN, Singh HN, Tripathi R (2003) Present status of solar distillation. Sol Energy 75(5):367–373

    Article  Google Scholar 

  3. Panchal H, Patel P, Mevada R, Patel H (2014) Reviews on different energy absorbing materials for performance analysis of solar still. Int J Adv Eng Res Dev 1(11):62–66

    Google Scholar 

  4. Vishwanath Kumar P, Kumar A, Prakash O, Kaviti AK (2015) Solar stills system design: a review. Renew Sustain Energy Rev 51:153–181

    Article  Google Scholar 

  5. Arulanandam SJ, Hollands KGT, Brundrett E (1999) A CFD heat transfer analysis of the transpired solar collector under no-wind conditions. Sol Energy 67:93–100

    Article  Google Scholar 

  6. Rahbar N, Esfahani JA (2012) Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study. Desalin Water Treat 50(1–3):387–396

    Article  Google Scholar 

  7. Edalatpour M, Kianifar A, Ghiami S (2015) Effect of blade installation on heat transfer and fluid flow within a single slope solar still. Int Commun Heat Mass Transf 66:63–70

    Article  Google Scholar 

  8. Setoodeh N, Rahimi R, Ameri A (2011) Modeling and determination of heat transfer coefficient in a basin solar still using CFD. Desalination 268(1–3):103–110

    Article  Google Scholar 

  9. Rahbar N, Esfahani JA, Fotouhi-Bafghi E (2015) Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still—CFD simulation and theoretical analysis. Sol Energy 113:313–323

    Article  Google Scholar 

  10. Poullikkas A, Rouvas C, Hadjipaschalis I, Kourtis G (2012) Optimum sizing of steam turbines for concentrated solar power plants. Int J Energy Environ 3(1):9–18

    Article  Google Scholar 

  11. Panchal HN, Shah PK (2013) Modeling and verification of hemispherical solar still using ANSYS CFD. Int J Energy Environ 4(3):2076–2909

    Google Scholar 

  12. Panchal HN, Shah PK (2011) Modelling and verification of single slope solar still using ANSYS-CFX. Int J Energy Environ 2(6):985–998

    Google Scholar 

  13. Edalatpour M, Aryana K, Kianifar A, Tiwari GN, Mahian O, Wongwises S (2016) Solar stills: a review of the latest developments in numerical simulations. Sol Energy 135:897–922

    Article  Google Scholar 

  14. Ibrahim AGM, Elshamarka SE (2015) Performance study of a modified basin type solar still. Sol Energy 118:397–409

    Article  Google Scholar 

  15. Tabrizi FF, Dashtban M, Moghaddam H (2010) Experimental investigation of a weir-type cascade solar still with built-in latent heat thermal energy storage system. Desalination 260(1–3):248–253

    Article  Google Scholar 

  16. Tiwari AK, Tiwari GN (2006) Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination 195(1–3):78–94

    Article  Google Scholar 

  17. Kumar S, Dubey A, Tiwari GN (2014) A solar still augmented with an evacuated tube collector in forced mode. Desalination 347:15–24

    Article  Google Scholar 

  18. Kannan R, Selvaganesan C, Vignesh M, Ramesh Babu B, Fuentes M, Vivar M, Skryabin I, Srithar K (2014) Solar still with vapor adsorption basin: performance analysis. Renew Energy 62:258–264

    Article  Google Scholar 

  19. Madhlopa A, Johnstone C (2009) Numerical study of a passive solar still with separate condenser. Renew Energy 34(7):1668–1677

    Article  Google Scholar 

  20. Singh RV, Kumar S, Hasan MM, Emran Khan M, Tiwari GN (2013) Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 318:25–33

    Article  Google Scholar 

  21. Halima HB, Frikha N, Slama RB (2014) Numerical investigation of a simple solar still coupled to a compression heat pump. Desalination 337(1):60–66

    Article  Google Scholar 

  22. Abderachid T, Abdenacer K (2013) Effect of orientation on the performance of a symmetric solar still with a double effect solar still (comparison study). Desalination 329:68–77

    Article  Google Scholar 

  23. Kumar D, Himanshu P, Ahmad Z (2013) Performance analysis of single slope solar still. Int J Mech Robot Res 3(3):66–72

    Google Scholar 

  24. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA (2000) Parameters affecting solar still productivity. Energy Convers Manag 41(16):1797–1809

    Article  Google Scholar 

  25. Burbano AM (2014) Evaluation of basin and insulating materials in solar still prototype for solar distillation plant at Kamusuchiwo community, High Guajira key words building prototype still. Int Conf Renew Energies Power Qual 1(12):547–552

    Article  Google Scholar 

  26. Mashaly AF, Alazba AA (2016) Neural network approach for predicting solar still production using agricultural drainage as a feedwater source. Desalin Water Treat 57(59):28646–28660

    Article  Google Scholar 

  27. El-Samadony YAF, El-Maghlany WM, Kabeel AE (2016) Influence of glass cover inclination angle on radiation heat transfer rate within stepped solar still. Desalination 384:68–77

    Article  Google Scholar 

  28. Karroute S, Chaker A (2014) Theoretical and numerical study of the effect of coupling a collector and reflector on the solar still efficiency. In: IREC 2014—5th international renewable energy congress

    Google Scholar 

  29. Belhadj MM, Bouguettaia H, Marif Y, Zerrouki M (2015) Numerical study of a double-slope solar still coupled with capillary film condenser in South Algeria. Energy Convers Manag 94:245–252

    Article  Google Scholar 

  30. Karroute S, Chaker A (2011) Effect of orientation of solar still on the productivity of fresh water. In: Revue des Energies Renouvelables ICESD’11 Adrar (2011), pp 25–31

    Google Scholar 

  31. Agboola OP, Atikol U, Assefi Hossein (2015) Feasibility assessment of basin solar stills. Int J Green Energy 12(2):139–147

    Article  Google Scholar 

  32. Hamadou OA, Abdellatif K (2014) Modeling an active solar still for sea water desalination process optimization. Desalination 354:1–8

    Article  Google Scholar 

  33. Hamdan MA, Haj Khalil RA, Abdelhafez EAM (2013) Comparison of neural network models in the estimation of the performance of solar still under Jordanian climate. J Clean Energy Technol 1(3):239–242

    Google Scholar 

  34. Gaur MK, Tiwari GN (2010) Optimization of number of collectors for integrated PV/T hybrid active solar still. Appl Energy 87(5):1763–1772

    Article  Google Scholar 

  35. Malaeb L, Ayoub GM, Al-Hindi M (2014) The effect of cover geometry on the productivity of a modified solar still desalination unit. Energy Procedia 50:406–413

    Article  Google Scholar 

  36. Dimri V, Sarkar B, Singh U, Tiwari GN (2008) Effect of condensing cover material on yield of an active solar still: an experimental validation. Desalination 227(1–3):178–189

    Article  Google Scholar 

  37. Bait O, Si-ameur M, Benmoussa A (2015) Numerical approach of a double slope solar still combined with a cylindrical solar water heater: mass and heat energy balance mathematical model. J Polytechnic-Politeknik Dergisi 18(4):227–234

    Google Scholar 

  38. Ahmed MI, Hrairi M, Ismail AF (2009) On the characteristics of multistage evacuated solar distillation. Renew Energy 34(6):1471–1478

    Article  Google Scholar 

  39. Shatat MIM, Mahkamov K (2010) Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling. Renew Energy 35(1):52–61

    Article  Google Scholar 

  40. Bait O, Si-Ameur M (2016) Numerical investigation of a multi-stage solar still under Batna climatic conditions: effect of radiation term on mass and heat energy balances. Energy 98:308–323

    Article  Google Scholar 

  41. Reddy KS, Ravi Kumar K, O’Donovan TS, Mallick TK (2012) Performance analysis of an evacuated multi-stage solar water desalination system. Desalination 288:80–92

    Article  Google Scholar 

  42. Kumar PV, Kaviti AK, Prakash O, Reddy KS (2012) Optimization of design and operating parameters on the year round performance of a multi-stage evacuated solar desalination system using transient mathematical analysis. Int J Energy Environ 3(3):409–434

    Google Scholar 

  43. Kabeel AE, Omara ZM, Essa FA, Abdullah AS (2016) Solar still with condenser—a detailed review. Renew Sustain Energy Rev 59:839–857

    Article  Google Scholar 

  44. Saidur R, Elcevvadi ET, Mekhilef S, Safari A, Mohammed HA (2011) An overview of different distillation methods for small scale applications. Renew Sustain Energy Rev 15(9):4756–4764

    Article  Google Scholar 

  45. Rajaseenivasan T, Kalidasa Murugavel K, Elango T, Samuel Hansen R (2013) A review of different methods to enhance the productivity of the multi-effect solar still. Renew Sustain Energy Rev 17:248–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DevRoy, A., Prakash, O., Singh, S., Kumar, A. (2019). Application of Software in Predicting Thermal Behaviours of Solar Stills. In: Kumar, A., Prakash, O. (eds) Solar Desalination Technology. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6887-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6887-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6886-8

  • Online ISBN: 978-981-13-6887-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics