Skip to main content

The Molecular Basis of Sex Determination and Differentiation: Implications for Understanding DSD

  • Chapter
  • First Online:
Book cover Disorders|Differences of Sex Development

Abstract

DSD are a heterogeneous group of congenital conditions in which development of chromosomal, gonadal or anatomical sex is atypical. They are complex conditions with regard to their diagnosis, management and sequelae, in particular infertility and risk of gonadal malignancy and therefore represent a major paediatric concern. They are mainly caused by a disruption in the complex network of gene regulation responsible for development of testes, ovaries and genital tracts in the embryo. Studies in both humans and mice have identified a number of genes that play a critical role in this process and that will be presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baetens D, Mendonca BB, Verdin H, et al. Non-coding variation in disorders of sex development. Clin Genet. 2017;91(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  • Bagheri-Fam S, Sim H, Bernard P, et al. Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol. 2008;314(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  • Bagheri-Fam S, Bird AD, Zhao L, et al. Testis determination requires a specific FGFR2 isoform to repress FOXL2. Endocrinology. 2017;158(11):3832–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbaux S, Niaudet P, Gubler MC, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17(4):467–70.

    Article  CAS  PubMed  Google Scholar 

  • Baron D, Batista F, Chaffaux S, et al. Foxl2 gene and the development of the ovary: a story about goat, mouse, fish and woman. Reprod Nutr Dev. 2005;45(3):377–82.

    Article  CAS  PubMed  Google Scholar 

  • Bashamboo A, Eozenou C, Jorgensen A, et al. Loss of function of the nuclear receptor NR2F2, encoding COUP-TF2, causes testis development and cardiac defects in 46,XX children. Am J Hum Genet. 2018;102(3):487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter RM, Arboleda VA, Lee H, et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab. 2015;100(2):E333–44.

    Article  CAS  PubMed  Google Scholar 

  • Bernardini L, Gimelli S, Gervasini C, et al. Recurrent microdeletion at 17q12 as a cause of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: two case reports. Orphanet J Rare Dis. 2009;4:25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berta P, Hawkins JR, Sinclair AH, et al. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990;348(6300):448–50.

    Article  CAS  PubMed  Google Scholar 

  • Biason-Lauber A, Konrad D, Navratil F, et al. A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351(8):792–8.

    Article  CAS  PubMed  Google Scholar 

  • Biason-Lauber A, De Filippo G, Konrad D, et al. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007;22(1):224–9.

    Article  CAS  PubMed  Google Scholar 

  • Birk OS, Casiano DE, Wassif CA, et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature. 2000;403(6772):909–13.

    Article  CAS  PubMed  Google Scholar 

  • Bogani D, Siggers P, Brixey R, et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP 3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol. 2009;7(9):e1000196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The genetic and environmental factors underlying hypospadias. Sex Dev. 2015;9(5):239–59.

    Article  PubMed  Google Scholar 

  • Callier P, Calvel P, Matevossian A, et al. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet. 2014;10(5):e1004340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chassot AA, Gillot I, Chaboissier MC. R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction. 2014;148(6):R97–110.

    Article  PubMed  CAS  Google Scholar 

  • Cheroki C, Krepischi-Santos AC, Rosenberg C, et al. Report of a del22q11 in a patient with Mayer-Rokitansky-Kuster-Hauser (MRKH) anomaly and exclusion of WNT-4, RAR-gamma, and RXR-alpha as major genes determining MRKH anomaly in a study of 25 affected women. Am J Med Genet A. 2006;140(12):1339–42.

    Article  PubMed  CAS  Google Scholar 

  • Cheroki C, Krepischi-Santos AC, Szuhai K, et al. Genomic imbalances associated with mullerian aplasia. J Med Genet. 2008;45(4):228–32.

    Article  CAS  PubMed  Google Scholar 

  • Clark AM, Garland KK, Russell LD. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod. 2000;63(6):1825–38.

    Article  CAS  PubMed  Google Scholar 

  • Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001;27(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  • Croft B, Ayers K, Sinclair A, et al. Review disorders of sex development: the evolving role of genomics in diagnosis and gene discovery. Birth Defects Res C Embryo Today. 2016;108(4):337–50.

    CAS  PubMed  Google Scholar 

  • Dong Y, Yi Y, Yao H, et al. Targeted next-generation sequencing identification of mutations in patients with disorders of sex development. BMC Med Genet. 2016;17:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eggers S, Sinclair A. Mammalian sex determination-insights from humans and mice. Chromosome Res. 2012;20(1):215–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10(11):673–83.

    Article  CAS  PubMed  Google Scholar 

  • Eggers S, Sadedin S, van den Bergen JA, et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 2016;17(1):243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan Y, Zhang X, Wang L, et al. Diagnostic Application of Targeted Next-Generation Sequencing of 80 Genes Associated with Disorders of Sexual Development. Sci Rep. 2017;7:44536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujimoto Y, Tanaka SS, Yamaguchi YL, et al. Homeoproteins Six1 and Six4 regulate male sex determination and mouse gonadal development. Dev Cell. 2013;26(4):416–30.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ortiz JE, Pelosi E, Omari S, et al. Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol. 2009;9:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gustin SE, Hogg K, Stringer JM, et al. WNT/beta-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol. 2016;412(2):250–60.

    Article  CAS  PubMed  Google Scholar 

  • Hammes A, Guo JK, Lutsch G, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  • Hastie ND. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development. 2017;144(16):2862–72.

    Article  CAS  PubMed  Google Scholar 

  • Hu YC, Okumura LM, Page DC. Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 2013;9(7):e1003629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes IA, Houk C, Ahmed SF, et al. Consensus statement on management of intersex disorders. Arch Dis Child. 2006;91(7):554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan BK, Mohammed M, Ching ST, et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet. 2001;68(5):1102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami K, Sato S, Ozaki H, et al. Six family genes—structure and function as transcription factors and their roles in development. Bioessays. 2000;22(7):616–26.

    Article  CAS  PubMed  Google Scholar 

  • Kim GJ, Sock E, Buchberger A, et al. Copy number variation of two separate regulatory regions upstream of SOX9 causes isolated 46,XY or 46,XX disorder of sex development. J Med Genet. 2015;52(4):240–7.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kang E, Heo SH, et al. Diagnostic yield of targeted gene panel sequencing to identify the genetic etiology of disorders of sex development. Mol Cell Endocrinol. 2017;444:19–25.

    Article  CAS  PubMed  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351(6322):117–21.

    Article  CAS  PubMed  Google Scholar 

  • Koopman P, Sinclair A, Lovell-Badge R. Of sex and determination: marking 25 years of Randy, the sex-reversed mouse. Development. 2016;143(10):1633–7.

    Article  CAS  PubMed  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91.

    Article  CAS  PubMed  Google Scholar 

  • Kuroki S, Matoba S, Akiyoshi M, et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science (New York, NY). 2013;341(6150):1106–9.

    Article  CAS  Google Scholar 

  • Lambeth LS, Raymond CS, Roeszler KN, et al. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol. 2014;389(2):160–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Caignec C, Delnatte C, Vermeesch JR, et al. Complete sex reversal in a WAGR syndrome patient. Am J Med Genet A. 2007;143a(22):2692–5.

    Article  PubMed  Google Scholar 

  • Ledig S, Wieacker P. Clinical and genetic aspects of Mayer-Rokitansky-Kuster-Hauser syndrome. Med Genet. 2018;30(1):3–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ledig S, Schippert C, Strick R, et al. Recurrent aberrations identified by array-CGH in patients with Mayer-Rokitansky-Kuster-Hauser syndrome. Fertil Steril. 2011;95(5):1589–94.

    Article  CAS  PubMed  Google Scholar 

  • Ledig S, Hiort O, Wunsch L, et al. Partial deletion of DMRT1 causes 46,XY ovotesticular disorder of sexual development. Eur J Endocrinol. 2012;167(1):119–24.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zheng M, Lau YF. The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep. 2014;8(3):723–33.

    Article  CAS  PubMed  Google Scholar 

  • Loke J, Pearlman A, Radi O, et al. Mutations in MAP 3K1 tilt the balance from SOX9/FGF9 to WNT/beta-catenin signaling. Hum Mol Genet. 2014;23(4):1073–83.

    Article  CAS  PubMed  Google Scholar 

  • Ludbrook LM, Harley VR. Sex determination: a ‘window’ of DAX1 activity. Trends Endocrinol Metab. 2004;15(3):116–21.

    Article  CAS  PubMed  Google Scholar 

  • Ludbrook LM, Bernard P, Bagheri-Fam S, et al. Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology. 2012;153(4):1948–58.

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77(4):481–90.

    Article  CAS  PubMed  Google Scholar 

  • Manuylov NL, Zhou B, Ma Q, et al. Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol. 2011;353(2):229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsudi BA, Kartapradja H, Paramayuda C, et al. Loss of DMRT1 gene in a Mos 45,XY,-9[8]/46,XY,r(9)[29]/47,XY,+idic r(9)x 2[1]/46,XY,idic r(9)[1]/46,XY[1] female presenting with short stature. Mol Cytogenet. 2018;11:28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matson CK, Murphy MW, Sarver AL, et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011;476(7358):101–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meduri G, Bachelot A, Duflos C, et al. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: case report. Hum Reprod. 2010;25(1):235–43.

    Article  CAS  PubMed  Google Scholar 

  • Meeks JJ, Weiss J, Jameson JL. Dax1 is required for testis determination. Nat Genet. 2003;34(1):32–3.

    Article  CAS  PubMed  Google Scholar 

  • Minkina A, Matson CK, Lindeman RE, et al. DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell. 2014;29(5):511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naasse Y, Bakhchane A, Charoute H, et al. A novel homozygous missense mutation in the FU-CRD2 domain of the R-spondin1 gene associated with familial 46,XX DSD. Sex Dev. 2017;11(5–6):269–74.

    Article  CAS  PubMed  Google Scholar 

  • Nik-Zainal S, Strick R, Storer M, et al. High incidence of recurrent copy number variants in patients with isolated and syndromic Mullerian aplasia. J Med Genet. 2011;48(3):197–204.

    Article  PubMed  Google Scholar 

  • Ozen S, Onay H, Atik T, et al. Rapid molecular genetic diagnosis with next-generation sequencing in 46,XY disorders of sex development cases: efficiency and cost assessment. Horm Res Paediatr. 2017;87(2):81–7.

    Article  PubMed  CAS  Google Scholar 

  • Padua MB, Jiang T, Morse DA, et al. Combined loss of the GATA4 and GATA6 transcription factors in male mice disrupts testicular development and confers adrenal-like function in the testes. Endocrinology. 2015;156(5):1873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Meeks JJ, Raverot G, et al. Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development. 2005;132(10):2415–23.

    Article  CAS  PubMed  Google Scholar 

  • Parma P, Radi O, Vidal V, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet. 2006;38(11):1304–9.

    Article  CAS  PubMed  Google Scholar 

  • Pearlman A, Loke J, Le Caignec C, et al. Mutations in MAP 3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet. 2010;87(6):898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini M, Pantano S, Lucchini F, et al. Emx2 developmental expression in the primordia of the reproductive and excretory systems. Anat Embryol. 1997;196(6):427–33.

    Article  CAS  Google Scholar 

  • Pelletier J, Bruening W, Kashtan CE, et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell. 1991;67(2):437–47.

    Article  CAS  PubMed  Google Scholar 

  • Philibert P, Biason-Lauber A, Rouzier R, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and mullerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93(3):895–900.

    Article  CAS  PubMed  Google Scholar 

  • Philibert P, Leprieur E, Zenaty D, et al. Steroidogenic factor-1 (SF-1) gene mutation as a frequent cause of primary amenorrhea in 46,XY female adolescents with low testosterone concentration. Reprod Biol Endocrinol. 2010;8:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piard J, Mignot B, Arbez-Gindre F, et al. Severe sex differentiation disorder in a boy with a 3.8 Mb 10q25.3-q26.12 microdeletion encompassing EMX2. Am J Med Genet A. 2014;164a(10):2618–22.

    Article  PubMed  CAS  Google Scholar 

  • Piprek RP, Kloc M, Kubiak JZ. Early development of the gonads: origin and differentiation of the somatic cells of the genital ridges. Results Probl Cell Differ. 2016;58:1–22.

    Article  CAS  PubMed  Google Scholar 

  • Pitetti JL, Calvel P, Romero Y, et al. Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet. 2013;9(1):e1003160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polanco JC, Wilhelm D, Davidson TL, et al. Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Hum Mol Genet. 2010;19(3):506–16.

    Article  CAS  PubMed  Google Scholar 

  • Portnoi MF, Dumargne MC, Rojo S, et al. Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies. Hum Mol Genet. 2018;27(7):1228–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastetter RH, Bernard P, Palmer JS, et al. Marker genes identify three somatic cell types in the fetal mouse ovary. Dev Biol. 2014;394(2):242–52.

    Article  CAS  PubMed  Google Scholar 

  • Raymond CS, Murphy MW, O'Sullivan MG, et al. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 2000;14(20):2587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandbacka M, Laivuori H, Freitas E, et al. TBX6, LHX1 and copy number variations in the complex genetics of Mullerian aplasia. Orphanet J Rare Dis. 2013;8:125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131(4):933–42.

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;453(7197):930–4.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346(6281):240–4.

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasan R, Gordon CT, Benko S, et al. Altered SOX9 genital tubercle enhancer region in hypospadias. J Steroid Biochem Mol Biol. 2017;170:28–38.

    Article  CAS  PubMed  Google Scholar 

  • Sutton E, Hughes J, White S, et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Investig. 2011;121(1):328–41.

    Article  CAS  PubMed  Google Scholar 

  • Swain A, Narvaez V, Burgoyne P, et al. Dax1 antagonizes Sry action in mammalian sex determination. Nature. 1998;391(6669):761–7.

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli S, Megiorni F, De Bernardo C, et al. Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat. 2008;29(2):220–6.

    Article  PubMed  Google Scholar 

  • Tucker EJ, Grover SR, Bachelot A, et al. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–35.

    Article  PubMed  Google Scholar 

  • Uhlenhaut NH, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139(6):1130–42.

    Article  CAS  PubMed  Google Scholar 

  • Val P, Lefrancois-Martinez AM, Veyssiere G, et al. SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept. 2003;1(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warr N, Bogani D, Siggers P, et al. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP 3K1. PLoS One. 2011;6(5):e19572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warr N, Carre GA, Siggers P, et al. Gadd45gamma and Map 3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell. 2012;23(5):1020–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warr N, Siggers P, Carre GA, et al. Genetic analyses reveal functions for MAP 2K3 and MAP 2K6 in mouse testis determination. Biol Reprod. 2016;94(5):103.

    Article  PubMed  CAS  Google Scholar 

  • Zaytouni T, Efimenko EE, Tevosian SG. GATA transcription factors in the developing reproductive system. Adv Genet. 2011;76:93–134.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Bouty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouty, A., Ayers, K., Sinclair, A. (2020). The Molecular Basis of Sex Determination and Differentiation: Implications for Understanding DSD. In: Hutson, J., Grover, S., O'Connell, M., Bouty, A., Hanna, C. (eds) Disorders|Differences of Sex Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-7864-5_2

Download citation

Publish with us

Policies and ethics