Skip to main content

Pesticide Immunoassay in Food

  • Chapter
  • First Online:
Food Immunoassay

Abstract

This chapter introduces the overview of pesticides containing the application, characteristics, mode of action, classification, hazard, and the maximum residue levels. Then, the synthetic procedures of pesticide haptens were depicted at length. The antibodies acquired by the forementioned hapten were the most sensitivity to date. Synthesis formats of antigen with various active groups were summarized. The cross-reactivities of antibody were analyzed via the enzyme-linked immunosorbent assay to provide the basis for hapten design. Additionally, authors also presented the pretreatment methods of different samples. Then, the colloidal gold-based immunochromatographic test strips for the determination of pesticides were described including the detection ranges and cutoff values. Finally, the perspective of immunoassays for pesticide analysis was discussed containing three parts: the introduction of computer-assisted molecular modeling, the development of the genetic engineering antibodies, and the application of nanomaterials in pesticide immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pico Y, Blasco C, Font G (2004) Environmental and food applications of LC-tandem mass spectrometry in pesticide-residue analysis: an overview. Mass Spectrom Rev 23(1):45–85

    Article  CAS  PubMed  Google Scholar 

  2. Zhao YY, Liang Y, Liu Y, Zhang X, Hu XD, Tu SC, Wu AH, Zhang CZ, Zhong JF, Zhao SM, Liu XJ, Tu K (2016) Isolation of broad-specificity domain antibody from phage library for development of pyrethroid immunoassay. Anal Biochem 502:1–7

    Article  CAS  PubMed  Google Scholar 

  3. Kumar P, Kim KH, Deep A (2015) Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens Bioelectron 70:469–481

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Wang Z, Wen Y, Shi J, Wang J (2015) Simultaneous detection of parathion and imidacloprid using broad-specificity polyclonal antibody in enzyme-linked immunosorbent assay. Anal Methods 7(1):205–210

    Article  CAS  Google Scholar 

  5. Manclus JJ, Moreno MJ, Plana E, Montoya A (2008) Development of monoclonal immunoassays for the determination of triazole fungicides in fruit juices. J Agric Food Chem 56(19):8793–8800

    Article  CAS  PubMed  Google Scholar 

  6. Hooser EA, Belden JB, Smith LM, McMurry ST (2012) Acute toxicity of three strobilurin fungicide formulations and their active ingredients to tadpoles. Ecotoxicology 21(5):1458–1464

    Article  CAS  PubMed  Google Scholar 

  7. Esteve-Turrillas FA, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2017) A class-selective immunoassay for simultaneous analysis of anilinopyrimidine fungicides using a rationally designed hapten. Analyst 142(20):3975–3985

    Article  CAS  PubMed  Google Scholar 

  8. Hirakawa Y, Yamasaki T, Harada A, Ohtake T, Adachi K, Iwasa S, Narita H, Miyake S (2015) Analysis of the fungicide boscalid in horticultural crops using an enzyme-linked immunosorbent assay and an immunosensor based on surface plasmon resonance. J Agric Food Chem 63(36):8075–8082

    Article  CAS  PubMed  Google Scholar 

  9. Esteve-Turrillas FA, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2018) Highly sensitive monoclonal antibody-based immunoassays for boscalid analysis in strawberries. Food Chem 267:2–9

    Article  CAS  PubMed  Google Scholar 

  10. Wu Y-L, Chen R-X, Zhu Y, Zhao J, Yang T (2015) Simultaneous determination of sixteen amide fungicides in vegetables and fruits by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr B-Anal Technol Biomed Life Sci 989:11–20. https://doi.org/10.1016/j.jchromb.2015.02.038

    Article  CAS  Google Scholar 

  11. Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56(4):299–308

    Article  CAS  Google Scholar 

  12. El-Ghamry AM, Xu JM, Huang CY, Gan J (2002) Microbial response to bensulfuron-methyl treatment in soil. J Agric Food Chem 50(1):136–139. https://doi.org/10.1021/jf010756x

    Article  CAS  PubMed  Google Scholar 

  13. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56(11):1021–1032

    Article  CAS  PubMed  Google Scholar 

  14. Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38(9):721–772

    Article  PubMed  Google Scholar 

  15. Harabawy ASA, Ibrahim ATA (2014) Sublethal toxicity of carbofuran pesticide on the African catfish Clarias gariepinus (Burchell, 1822): hematological, biochemical and cytogenetic response. Ecotoxicol Environ Saf 103:61–67

    Article  CAS  PubMed  Google Scholar 

  16. Zikos C, Evangelou A, Karachaliou CE, Gourma G, Blouchos P, Moschopoulou G, Yialouris C, Griffiths J, Johnson G, Petrou P, Kakabakos S, Kintzios S, Livaniou E (2015) Commercially available chemicals as immunizing haptens for the development of a polyclonal antibody recognizing carbendazim and other benzimidazole-type fungicides. Chemosphere 119:S16–S20

    Article  CAS  PubMed  Google Scholar 

  17. Ucles A, Garcia AV, Garcia MDG, del Real AMA, Fernandez-Alba AR (2015) Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal Methods 7(21):9158–9165

    Article  CAS  Google Scholar 

  18. Hirakawa Y, Yamasaki T, Watanabe E, Okazaki F, Murakami-Yamaguchi Y, Oda M, Iwasa S, Narita H, Miyake S (2015) Development of an immunosensor for determination of the fungicide chlorothalonil in vegetables, using surface plasmon resonance. J Agric Food Chem 63(28):6325–6330

    Article  CAS  PubMed  Google Scholar 

  19. Okazaki F, Hirakawa Y, Yamaguchi-Murakami Y, Harada A, Watanabe E, Iwasa S, Narita H, Miyake S (2014) Development of direct competitive ELISA for residue analysis of fungicide Chlorothalonil in Vegetables. Food Hyg Saf Sci 55(2):65–72

    Article  CAS  Google Scholar 

  20. Chen XJ, Xu LG, Ma W, Liu LQ, Kuang H, Wang LB, Xu CL (2014) General immunoassay for pyrethroids based on a monoclonal antibody. Food Agric Immunol 25(3):341–349

    Article  CAS  Google Scholar 

  21. Wei XL, Zhao YR, Wang BQ, Wang YF (2014) Enzyme-linked immunosorbent assay-based two different polyclonal antibodies for the detection of cypermethrin with phenoxybenzene multiresidue. Food Agric Immunol 25(3):364–374

    Article  CAS  Google Scholar 

  22. Chen XJ, Xu LG, Ma W, Liu LQ, Kuang H, Peng CF, Wang LB, Xu CL (2013) Development of an enzyme-linked immunosorbent assay for cyhalothrin. Immunol Invest 42(6):493–503

    Article  CAS  PubMed  Google Scholar 

  23. Hua XD, Liu XF, Yin W, Xia YZ, Zhou QJ, Lu YW, Li W, Shi HY, Liu FQ, Wang MH (2015) A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the detection of bifenthrin in a chemical soil barrier. Sci Total Environ 502:246–251

    Article  CAS  PubMed  Google Scholar 

  24. Liu YH, Guo YR, Zhu GN, Tang FB (2014) Enzyme-linked immunosorbent assay for the determination of five organophosphorus pesticides in camellia oil. J Food Prot 77(7):1178–1183

    Article  CAS  PubMed  Google Scholar 

  25. Li YL, Zhao FC, Zhao LY, Yang ZY (2015) Development of a broad-specificity immunoassay for determination of organophosphorus pesticides using dual-generic hapten antigens. Food Anal Methods 8(2):420–427

    Article  Google Scholar 

  26. Zhao FC, Hu CY, Wang HM, Zhao LY, Yang ZY (2015) Development of a mAb-based immunoassay for the simultaneous determination of O,O-diethyl and O,O-dimethyl organophosphorus pesticides in vegetable and fruit samples pretreated with QuEChERS. Anal Bioanal Chem 407(30):8959–8970

    Article  CAS  PubMed  Google Scholar 

  27. Yaneva MY, Ivanov YL, Godjevargova TI (2017) Preparation of polyclonal antibodies with application for an organophosphorus pesticide immunoassay. Anal Lett 50(8):1307–1324

    Article  CAS  Google Scholar 

  28. Li M, Sheng EZ, Cong LJ, Wang MH (2013) Development of immunoassays for detecting clothianidin residue in agricultural products. J Agric Food Chem 61(15):3619–3623

    Article  CAS  PubMed  Google Scholar 

  29. Liu ZJ, Li M, Shi HY, Wang MH (2013) Development and evaluation of an enzyme-linked immunosorbent assay for the determination of thiacloprid in agricultural samples. Food Anal Methods 6(2):691–697

    Article  Google Scholar 

  30. Liu B, Feng JH, Sun X, Sheng W, Zhang Y, Wang S (2018) Development of an enzyme-linked immunosorbent assay for the detection of difenoconazole residues in fruits and vegetables. Food Anal Methods 11(1):119–127

    Article  Google Scholar 

  31. Cao Z, Zhao HW, Cui YL, Zhang L, Tan GY, Wang BM, Li QX (2014) Development of a sensitive monoclonal antibody-based enzyme-linked iimmunosorbent assay for the analysis of paclobutrazol residue in wheat kernel. J Agric Food Chem 62(8):1826–1831

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Moreno R, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2014) Immunoassays for trifloxystrobin analysis. Part I. Rational design of regioisomeric haptens and production of monoclonal antibodies. Food Chem 152:230–236

    Article  CAS  PubMed  Google Scholar 

  33. Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2011) Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation. Org Biomol Chem 9(5):1443–1453

    Article  CAS  PubMed  Google Scholar 

  34. Mercader JV, Agullo C, Esteve-Turrillas FA, Abad-Somovilla A, Abad-Fuentes A (2013) Immunoassays for pyraclostrobin analysis in processed food products using novel monoclonal antibodies and QuEChERS-based extracts. Food Control 32(1):42–48. https://doi.org/10.1016/j.foodcont.2012.12.003

    Article  CAS  Google Scholar 

  35. Esteve-Turrillas FA, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2015) Moiety and linker site heterologies for highly sensitive immunoanalysis of cyprodinil in fermented alcoholic drinks. Food Control 50:393–400. https://doi.org/10.1016/j.foodcont.2014.09.023

    Article  CAS  Google Scholar 

  36. Esteve-Turrillas FA, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2013) Mepanipyrim haptens and antibodies with nanomolar affinity. Analyst 138(12):3360–3364

    Article  CAS  PubMed  Google Scholar 

  37. Esteve-Turrillas FA, Mercader JV, Agullo C, Abad-Somovilla A, Abad-Fuentes A (2015) Site-heterologous haptens and competitive monoclonal antibody-based immunoassays for pyrimethanil residue analysis in foodstuffs. LWT-Food Sci Technol 63(1):604–611

    Article  CAS  Google Scholar 

  38. Mercader JV, Abad-Somovilla A, Agullo C, Abad-Fuentes A (2017) Fluxapyroxad haptens and antibodies for highly sensitive immunoanalysis of food samples. J Agric Food Chem 65(42):9333–9341

    Article  CAS  PubMed  Google Scholar 

  39. Ceballos-Alcantarilla E, Abad-Fuentes A, Aloisio V, Agullo C, Abad-Somovilla A, Mercader JV (2014) Haptens, bioconjugates, and antibodies for penthiopyrad immunosensing. Analyst 139(21):5358–5361

    Article  CAS  PubMed  Google Scholar 

  40. Liu ZJ, Zhang Z, Zhu GB, Sun JF, Zou B, Li M, Wang JG (2016) Rapid screening of flonicamid residues in environmental and agricultural samples by a sensitive enzyme immunoassay. Sci Total Environ 551:484–488

    Article  PubMed  CAS  Google Scholar 

  41. Esteve-Turrillas FA, Mercader JV, Agullo C, Marzo J, Abad-Somovilla A, Abad-Fuentes A (2014) Design and development of heterologous competitive immunoassays for the determination of boscalid residues. Analyst 139(14):3636–3644

    Article  CAS  PubMed  Google Scholar 

  42. Zhao JY, Yu XW, Luo Q, Wei CX, Ke CJ, Zuo HX, Yang X, Yuan JL (2014) Anti-bensulfuron methyl monoclonal antibody production and BSM-detecting indirect competitive enzyme-linked immunoassay establishment. Food Agric Immunol 25(3):350–363

    Article  CAS  Google Scholar 

  43. Yao LJ, Liu LQ, Song SS, Kuang H, Xu CL (2017) Development of indirect competitive enzyme-linked immunosorbent and immunochromatographic strip assays for carbofuran detection in fruits and vegetables. Food Agric Immunol 28(4):639–651

    Article  CAS  Google Scholar 

  44. Vasylieva N, Ahn KC, Barnych B, Gee SJ, Hammock BD (2015) Development of an immunoassay for the detection of the phenylpyrazole insecticide fipronil. Environ Sci Technol 49(16):10038–10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie ZJ, Kong DZ, Liu LQ, Song SS, Kuang H (2017) Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the simultaneous detection of avermectin and ivermectin. Food Agric Immunol 28(3):439–451

    Article  CAS  Google Scholar 

  46. Yan HJ, Liu LQ, Xu NF, Kuang H, Xu CL (2015) Development of an immunoassay for carbendazim based on a class-selective monoclonal antibody. Food Agric Immunol 26(5):659–670

    Article  CAS  Google Scholar 

  47. Liu LQ, Yan HJ, Zhang X, Kuang H, Xu CL (2015) Development of an anti-chlorothalonil monoclonal antibody based on a novel designed hapten. Food Agric Immunol 26(3):410–419

    Article  CAS  Google Scholar 

  48. Selvi AA, Manonmani HK (2013) Detection of isoprothiolane in food, soil, and water samples by immunosorbent assay using avian antibodies. J Immunoass Immunochem 34(2):149–165. https://doi.org/10.1080/15321819.2012.699492

    Article  CAS  Google Scholar 

  49. Mercader JV, Lopez-Moreno R, Esteve-Turrillas FA, Abad-Somovilla A, Abad-Fuentes A (2014) Immunoassays for trifloxystrobin analysis. Part II. Assay development and application to residue determination in food. Food Chem 162:41–46

    Article  CAS  PubMed  Google Scholar 

  50. Ceballos-Alcantarilla E, Agullo C, Abad-Fuentes A, Escamilla-Aguilar M, Abad-Somovilla A, Mercader JV (2017) High-affinity antibodies from a full penthiopyrad-mimicking hapten and heterologous immunoassay development for fruit juice analysis. Food Anal Methods 10(12):4013–4023

    Article  Google Scholar 

  51. Garcia-Febrero R, Salvador JP, Sanchez-Baeza F, Marco MP (2014) Rapid method based on immunoassay for determination of paraquat residues in wheat, barley and potato. Food Control 41:193–201

    Article  CAS  Google Scholar 

  52. Liu CM, Dou XW, Zhang L, Kong WJ, Wu L, Duan YP, Yang MH (2018) Development of a broad-specificity antibody-based immunoassay for triazines in ginger and the quantitative structure-activity relationship study of cross-reactive molecules by molecular modeling. Anal Chim Acta 1012:90–99

    Article  CAS  PubMed  Google Scholar 

  53. Chen XJ, Liu LQ, Kuang H, Song SS, Xu CL (2013) A strip-based immunoassay for rapid determination of fenpropathrin. Anal Methods 5(21):6234–6239

    Article  CAS  Google Scholar 

  54. Yang XD, Zhang GP, Wang FY, Wang YB, Hu XF, Li QM, Jia GC, Liu Z, Wang Y, Deng RG, Zeng XY (2015) Development of a colloidal gold-based strip test for the detection of chlorothalonil residues in cucumber. Food Agric Immunol 26(5):729–737

    Article  CAS  Google Scholar 

  55. Byzova NA, Zherdev AV, Zvereva EA, Dzantiev BB (2010) Immunochromatographic assay with photometric detection for rapid determination of the herbicide atrazine and other triazines in foodstuffs. J AOAC Int 93(1):36–43

    CAS  PubMed  Google Scholar 

  56. Liu LQ, Suryoprabowo S, Zheng QK, Song SS, Kuang H (2017) Rapid detection of aldicarb in cucumber with an immunochromatographic test strip. Food Agric Immunol 28(3):427–438

    Article  CAS  Google Scholar 

  57. Liu LQ, Suryoprabowo S, Zheng QK, Song SS, Kuang H (2017) Development of an immunochromatographic strip for detection of acetamiprid in cucumber and apple samples. Food Agric Immunol 28(5):767–778

    Article  CAS  Google Scholar 

  58. Li M, Hua XD, Ma M, Liu JS, Zhou LL, Wang MH (2014) Detecting clothianidin residues in environmental and agricultural samples using rapid, sensitive enzyme-linked immunosorbent assay and gold immunochromatographic assay. Sci Total Environ 499:1–6

    Article  CAS  PubMed  Google Scholar 

  59. Jiang H, Fan MT (2012) Multi-analyte immunoassay for pesticides: a review. Anal Lett 45(11):1347–1364. https://doi.org/10.1080/00032719.2012.675493

    Article  CAS  Google Scholar 

  60. Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H, Wang ZH, Sun XL, Shen YD, Yang JY, Xu ZL (2017) Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: a review. Trac-Trends Anal Chem 88:25–40. https://doi.org/10.1016/j.trac.2016.12.010

    Article  CAS  Google Scholar 

  61. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlai Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, C., Kuang, H., Xu, L. (2019). Pesticide Immunoassay in Food. In: Food Immunoassay. Springer, Singapore. https://doi.org/10.1007/978-981-13-9034-0_4

Download citation

Publish with us

Policies and ethics