Skip to main content

Mechanistic Pathways Toward the Synthesis of Heterocycles Under Cross-Dehydrogenative Conditions

  • Chapter
  • First Online:
Heterocycles via Cross Dehydrogenative Coupling

Abstract

Due to the richness of the field of cross-dehydrogenative coupling reactions and the plethora of applications toward the synthesis and derivatization of heterocyclic molecules, there is an increasing amount of synthetic methodologies which spread across different catalytic fields and hence, yield to a huge variety of operating mechanisms. Although all the pathways follow the same underlying principles, they can be easily differentiated according to the type of activation (thermal of photocatalyzed) and the type of catalyst (metallic or metal-free). In this account, we have summarized the most recent and relevant examples under the aforementioned categories, focusing especially on those presenting the most compelling and better understood mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann L (2014) Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het-H bond functionalizations. Acc Chem Res 47:281–295. https://doi.org/10.1021/ar3002798

    Article  CAS  PubMed  Google Scholar 

  2. Ackermann L, Lygin AV, Hofmann N (2011) Ruthenium-catalyzed oxidative synthesis of 2-pyridones through C–H/N–H bond functionalizations. Org Lett 13:3278–3281. https://doi.org/10.1021/ol201244s

    Article  CAS  PubMed  Google Scholar 

  3. Ackermann L, Pospech J (2011) Ruthenium-catalyzed oxidative C–H bond alkenylations in water: expedient synthesis of annulated lactones. Org Lett 13:4153–4155. https://doi.org/10.1021/ol201563r

    Article  CAS  PubMed  Google Scholar 

  4. Aggarwal T, Kumar S, Verma AK (2016) Iodine-mediated synthesis of heterocycles via electrophilic cyclization of alkynes. Org Biomol Chem 14:7639–7653. https://doi.org/10.1039/c6ob01054g

    Article  CAS  PubMed  Google Scholar 

  5. Almasalma AA, Mejia E (2018) Copper-catalyzed allylic C–H alkynylation by cross-dehydrogenative coupling. Chem Eur J 24:12269–12273. https://doi.org/10.1002/chem.201801772

    Article  CAS  PubMed  Google Scholar 

  6. Armaroli N (2001) Photoactive mono- and polynuclear Cu(i)–phenanthrolines. A viable alternative to Ru(ii)–polypyridines? Chem Soc Rev 30:113–124. https://doi.org/10.1039/b000703j

    Article  CAS  Google Scholar 

  7. Barnard JR, Jackman LM (1960) 622. Hydrogen transfer. Part X. The dehydrogenation of hydroaromatic hydrocarbons by quinones: theoretical calculations for possible intermediates. J Chem Soc 3110. https://doi.org/10.1039/jr9600003110

  8. Baslé O, Li C-J (2007) Copper catalyzed oxidative alkylation of sp3 C–H bond adjacent to a nitrogen atom using molecular oxygen in water. Green Chem 9:1047. https://doi.org/10.1039/b707745a

    Article  CAS  Google Scholar 

  9. Bi HP, Chen WW, Liang YM, Li CJ (2009) A novel iron-catalyzed decarboxylative Csp3–Csp2 coupling of proline derivatives and naphthol. Org Lett 11:3246–3249. https://doi.org/10.1021/ol901129v

    Article  CAS  PubMed  Google Scholar 

  10. Boess E, Sureshkumar D, Sud A, Wirtz C, Fares C, Klussmann M (2011) Mechanistic studies on a Cu-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline: structure of intermediates and the role of methanol as a solvent. J Am Chem Soc 133:8106–8109. https://doi.org/10.1021/ja201610c

    Article  CAS  PubMed  Google Scholar 

  11. Borpatra PJ, Deb ML, Baruah PK (2018) Copper-catalyzed tandem multi-component approach to 1,3-oxazines at room temperature by cross-dehydrogenative coupling using methanol as C1 feedstock. Synlett 29:1171–1175. https://doi.org/10.1055/s-0036-1591775

    Article  CAS  Google Scholar 

  12. Buldt LA, Guo X, Prescimone A, Wenger OS (2016) A molybdenum(0) isocyanide analogue of Ru(2,2′-Bipyridine)3 (2+): a strong reductant for photoredox catalysis. Angew Chem Int Ed Engl 55:11247–11250. https://doi.org/10.1002/anie.201605571

    Article  CAS  PubMed  Google Scholar 

  13. Buldt LA, Wenger OS (2017) Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem Sci 8:7359–7367. https://doi.org/10.1039/c7sc03372a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campos KR (2007) Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem Soc Rev 36:1069–1084. https://doi.org/10.1039/b607547a

    Article  CAS  PubMed  Google Scholar 

  15. Carrick WL, Karapinka GL, Kwiatkowski GT (1969) Oxidative coupling of phenols using vanadium tetrachloride and vanadium oxytrichloride. J Org Chem 34:2388–2392. https://doi.org/10.1021/jo01260a029

    Article  CAS  Google Scholar 

  16. Chang HR, McCusker JK, Toftlund H, Wilson SR, Trautwein AX, Winkler H, Hendrickson DN (1990) [Tetrakis(2-pyridylmethyl)ethylenediamine]iron(II) perchlorate, the first rapidly interconverting ferrous spin-crossover complex. J Am Chem Soc 112:6814–6827. https://doi.org/10.1021/ja00175a012

    Article  CAS  Google Scholar 

  17. Chen B, Wu L-Z, Tung C-H (2018) Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00267

    Article  CAS  PubMed  Google Scholar 

  18. Chen W, Xie Z, Zheng H, Lou H, Liu L (2014) Structurally diverse alpha-substituted benzopyran synthesis through a practical metal-free C(sp3)–H functionalization. Org Lett 16:5988–5991. https://doi.org/10.1021/ol503004a

    Article  CAS  PubMed  Google Scholar 

  19. Chen WL, Yan RL, Tang D, Guo SB, Meng X, Chen BH (2012) Iodine-induced regioselective direct alkylation of azoles via in situ formed alkyliodide. Tetrahedron 68:7956–7959. https://doi.org/10.1016/j.tet.2012.07.008

    Article  CAS  Google Scholar 

  20. Chen ZK, Wang BJ, Zhang JT, Yu WL, Liu ZX, Zhang YH (2015) Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org Chem Front 2:1107–1295. https://doi.org/10.1039/c5qo00004a

    Article  CAS  Google Scholar 

  21. Cheng G-J, Song L-J, Yang Y-F, Zhang X, Wiest O, Wu Y-D (2013) Computational studies on the mechanism of the copper-catalyzed sp3–C–H cross-dehydrogenative coupling reaction. ChemPlusChem 78:943–951. https://doi.org/10.1002/cplu.201300117

    Article  CAS  PubMed  Google Scholar 

  22. Correia CA, Li CJ (2010) Copper-catalyzed cross-dehydrogenative coupling (CDC) of alkynes and benzylic C–H bonds. Adv Synth Catal 352:1446–1450. https://doi.org/10.1002/adsc.201000066

    Article  CAS  Google Scholar 

  23. Cuthbertson JD, MacMillan DW (2015) The direct arylation of allylic sp(3) C–H bonds via organic and photoredox catalysis. Nature 519:74–77. https://doi.org/10.1038/nature14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) Simple Cu(I) complexes with unprecedented excited-state lifetimes. J Am Chem Soc 124:6–7. https://doi.org/10.1021/ja012247h

    Article  CAS  PubMed  Google Scholar 

  25. Daugulis O, Do HQ, Shabashov D (2009) Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc Chem Res 42:1074–1086. https://doi.org/10.1021/ar9000058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deb ML, Borpatra PJ, Saikia PJ, Baruah PK (2017) Introducing tetramethylurea as a new methylene precursor: a microwave-assisted RuCl3-catalyzed cross dehydrogenative coupling approach to bis(indolyl)methanes. Org Biomol Chem 15:1435–1443. https://doi.org/10.1039/c6ob02671k

    Article  CAS  PubMed  Google Scholar 

  27. DeBoef B, Porter AL (2015) Aryl–aryl coupling via cross-dehydrogenative-coupling reactions. In: Li C-J (ed) From C–H to C–C bonds: cross-dehydrogenative-coupling. Green Chemistry Series, vol 26. The Royal Society of Chemistry, pp 114–132. https://doi.org/10.1039/9781782620082-00114

  28. Deng G-J, Xiao F, Yang L (2015) Cross-dehydrogenative-coupling reactions involving allyl, benzyl and alkyl C–H bonds. In: Li C-J (ed) From C–H to C–C bonds: cross-dehydrogenative-coupling. Green Chemistry Series, vol 26. The Royal Society of Chemistry, pp 93–113. https://doi.org/10.1039/9781782620082-00093

  29. Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR (2013) A versatile C–H functionalization of tetrahydroisoquinolines catalyzed by iodine at aerobic conditions. Org Lett 15:1092–1095. https://doi.org/10.1021/ol4001153

    Article  CAS  PubMed  Google Scholar 

  30. Faisca Phillips AM, Pombeiro AJL (2018) Recent developments in transition metal-catalyzed cross-dehydrogenative coupling reactions of ethers and thioethers. ChemCatChem 10:3354–3383. https://doi.org/10.1002/cctc.201800582

    Article  CAS  Google Scholar 

  31. Gao Q-H et al (2013) Metal-free dual sp3 C-H functionalization: I2-promoted domino oxidative cyclization to construct 2,5-disubstituted oxazoles. Tetrahedron 69:22–28. https://doi.org/10.1016/j.tet.2012.10.072

    Article  CAS  Google Scholar 

  32. García Mancheño O, Stopka T (2013) TEMPO derivatives as alternative mild oxidants in carbon-carbon coupling reactions. Synthesis 45:1602–1611. https://doi.org/10.1055/s-0033-1338480

    Article  CAS  Google Scholar 

  33. Ghosh I, Marzo L, Das A, Shaikh R, Konig B (2016) visible light mediated photoredox catalytic arylation reactions. Acc Chem Res 49:1566–1577. https://doi.org/10.1021/acs.accounts.6b00229

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh S, Pahovnik D, Kragl U, Mejia E (2018) Isospecific copolymerization of cyclohexene oxide and carbon dioxide catalyzed by dialkylmagnesium compounds. Macromolecules 51:846–852. https://doi.org/10.1021/acs.macromol.7b02463

    Article  CAS  Google Scholar 

  35. Girard SA, Knauber T, Li CJ (2014) The cross-dehydrogenative coupling of C(sp3)–H bonds: a versatile strategy for C–C bond formations. Angew Chem Int Ed Engl 53:74–100. https://doi.org/10.1002/anie.201304268

    Article  CAS  PubMed  Google Scholar 

  36. Guo X, Yu R, Li H, Li Z (2009) Iron-catalyzed tandem oxidative coupling and annulation: an efficient approach to construct polysubstituted benzofurans. J Am Chem Soc 131:17387–17393. https://doi.org/10.1021/ja907568j

    Article  CAS  PubMed  Google Scholar 

  37. Guo XX, Gu DW, Wu Z, Zhang W (2015) Copper-catalyzed C–H functionalization reactions: efficient synthesis of heterocycles. Chem Rev 115:1622–1651. https://doi.org/10.1021/cr500410y

    Article  CAS  PubMed  Google Scholar 

  38. He Z, Liu W, Li Z (2011) I2-catalyzed indole formation via oxidative cyclization of N-aryl enamines. Chem Asian J 6:1340–1343. https://doi.org/10.1002/asia.201100045

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez-Perez AC, Caron A, Collins SK (2015) Photochemical synthesis of complex carbazoles: evaluation of electronic effects in both UV- and visible-light methods in continuous flow. Chemistry 21:16673–16678. https://doi.org/10.1002/chem.201502661

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez-Perez AC, Collins SK (2013) A visible-light-mediated synthesis of carbazoles. Angew Chem Int Ed Engl 52:12696–12700. https://doi.org/10.1002/anie.201306920

    Article  CAS  PubMed  Google Scholar 

  41. Higgins RF et al (2016) Uncovering the roles of oxygen in Cr(III) photoredox catalysis. J Am Chem Soc 138:5451–5464. https://doi.org/10.1021/jacs.6b02723

    Article  CAS  PubMed  Google Scholar 

  42. Hirao T (1997) Vanadium in modern organic synthesis. Chem Rev 97:2707–2724. https://doi.org/10.1021/cr960014g

    Article  CAS  PubMed  Google Scholar 

  43. Hirao T (2007) Synthetic transformations via vanadium-induced redox reactions. In: Vanadium: the versatile metal, vol 974. ACS Symposium Series, vol 974. American Chemical Society, pp 2–27. https://doi.org/10.1021/bk-2007-0974.ch001

    Chapter  Google Scholar 

  44. Hu W, Lin J-P, Song L-R, Long Y-Q (2015) Direct synthesis of 2-aryl-4-quinolones via transition-metal-free intramolecular oxidative C(sp3)–H/C(sp3)–H coupling. Org Lett 17:1268–1271. https://doi.org/10.1021/acs.orglett.5b00248

    Article  CAS  PubMed  Google Scholar 

  45. Huang HY, Wu HR, Wei F, Wang D, Liu L (2015) Iodine-catalyzed direct olefination of 2-oxindoles and alkenes via cross-dehydrogenative coupling (CDC) in air. Org Lett 17:3702–3705. https://doi.org/10.1021/acs.orglett.5b01662

    Article  CAS  PubMed  Google Scholar 

  46. Huo C, Chen F, Yuan Y, Xie H, Wang Y (2015) Iron catalyzed dual-oxidative dehydrogenative (DOD) tandem annulation of glycine derivatives with tetrahydrofurans. Org Lett 17:5028–5031. https://doi.org/10.1021/acs.orglett.5b02504

    Article  CAS  PubMed  Google Scholar 

  47. Hurst TE, Taylor RJK (2017) A Cu-catalysed radical cross-dehydrogenative coupling approach to acridanes and related heterocycles. Eur J Org Chem 2017:203–207. https://doi.org/10.1002/ejoc.201601336

    Article  CAS  Google Scholar 

  48. Ito H, Ueda K, Itami K (2015) Cross-dehydrogenative-coupling reactions without metals. In: Li C-J (ed) From C–H to C–C bonds: cross-dehydrogenative-coupling. Green Chemistry Series, vol 26. The Royal Society of Chemistry, pp 153–196. https://doi.org/10.1039/9781782620082-00153

  49. Jiang Y, Xu K, Zeng C (2018) Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev 118:4485–4540. https://doi.org/10.1021/acs.chemrev.7b00271

    Article  CAS  PubMed  Google Scholar 

  50. Jones KM, Klussmann M (2012) Oxidative coupling of tertiary amines: scope, mechanism and challenges. Synlett 2012:159–162. https://doi.org/10.1055/s-0031-1290117

    Article  CAS  Google Scholar 

  51. Kang H et al (2017) Asymmetric oxidative coupling of phenols and hydroxycarbazoles. Org Lett 19:5505–5508. https://doi.org/10.1021/acs.orglett.7b02552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaswan P, Nandwana NK, DeBoef B, Kumar A (2016) Vanadyl acetylacetonate catalyzed methylenation of imidazo[1,2-a]pyridines by using dimethylacetamide as a methylene source: direct access to Bis(imidazo[1,2-a]pyridin-3-yl)methanes. Adv Synth Catal 358:2108–2115. https://doi.org/10.1002/adsc.201600225

    Article  CAS  Google Scholar 

  53. Kaswan P, Porter A, Pericherla K, Simone M, Peters S, Kumar A, DeBoef B (2015) Oxidative cross-coupling of sp(3)- and sp(2)-hybridized C–H bonds: vanadium-catalyzed aminomethylation of imidazo[1,2-a]pyridines. Org Lett 17:5208–5211. https://doi.org/10.1021/acs.orglett.5b02539

    Article  CAS  PubMed  Google Scholar 

  54. Kern J-M, Sauvage J-P (1987) Photoassisted C–C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. J Chem Soc, Chem Commun: 546–548 https://doi.org/10.1039/c39870000546

  55. Kim HY, Takizawa S, Sasai H, Oh K (2017) Reversal of enantioselectivity approach to BINOLs via single and dual 2-naphthol activation modes. Org Lett 19:3867–3870. https://doi.org/10.1021/acs.orglett.7b01734

    Article  CAS  PubMed  Google Scholar 

  56. Knorn M, Rawner T, Czerwieniec R, Reiser O (2015) [Copper(phenanthroline)(bisisonitrile)(+)-complexes for the visible-light-mediated atom transfer radical addition and allylation reactions. ACS Catal 5:5186–5193. https://doi.org/10.1021/acscatal.5b01071

    Article  CAS  Google Scholar 

  57. Kshirsagar UA, Regev C, Parnes R, Pappo D (2013) Iron-catalyzed oxidative cross-coupling of phenols and alkenes. Org Lett 15:3174–3177. https://doi.org/10.1021/ol401532a

    Article  CAS  PubMed  Google Scholar 

  58. Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddy KR (2012) Transition metal-free α-C(sp3)–H bond functionalization of amines by oxidative cross dehydrogenative coupling reaction: simple and direct access to C-4-alkylated 3,4-dihydroquinazoline derivatives. Adv Synth Catal 354:2985–2991. https://doi.org/10.1002/adsc.201200679

    Article  CAS  Google Scholar 

  59. Laha JK, Jethava KP, Patel S (2015) Scope of successive C–H functionalizations of the methyl group in 3-picolines: intramolecular carbonylation of arenes to the metal-free synthesis of 4-azafluorenones. Org Lett 17:5890–5893. https://doi.org/10.1021/acs.orglett.5b03071

    Article  CAS  PubMed  Google Scholar 

  60. Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M (2018) Catalytic applications of vanadium: a mechanistic perspective. Chem Rev https://doi.org/10.1021/acs.chemrev.8b00245

    Article  PubMed  Google Scholar 

  61. Lao ZQ, Zhong WH, Lou QH, Li ZJ, Meng XB (2012) KI-catalyzed imidation of sp3 C–H bond adjacent to amide nitrogen atom. Org Biomol Chem 10:7869–7871. https://doi.org/10.1039/c2ob26430g

    Article  CAS  PubMed  Google Scholar 

  62. Larsen CB, Wenger OS (2018) Photoredox catalysis with metal complexes made from earth-abundant elements. Chem Eur J 24:2039–2058. https://doi.org/10.1002/chem.201703602

    Article  CAS  PubMed  Google Scholar 

  63. Lee A, Betori RC, Crane EA, Scheidt KA (2018) An enantioselective cross-dehydrogenative coupling catalysis approach to substituted tetrahydropyrans. J Am Chem Soc 140:6212–6216. https://doi.org/10.1021/jacs.8b03063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lewis ES, Perry JM, Grinstein RH (1970) Mechanism of hydride transfer. III. Rates and isotope effects in the quinone oxidation of leuco triphenylmethane dyes. J Am Chem Soc 92:899–905. https://doi.org/10.1021/ja00707a027

    Article  CAS  Google Scholar 

  65. Li K, You J (2016) Cascade oxidative coupling/cyclization: a gateway to 3-amino polysubstituted five-membered heterocycles. J Org Chem 81:2327–2339. https://doi.org/10.1021/acs.joc.5b02838

    Article  CAS  PubMed  Google Scholar 

  66. Li Z, Bohle DS, Li CJ (2006) Cu-catalyzed cross-dehydrogenative coupling: a versatile strategy for C–C bond formations via the oxidative activation of sp(3) C–H bonds. Proc Natl Acad Sci USA 103:8928–8933. https://doi.org/10.1073/pnas.0601687103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li Z, Li CJ (2004) CuBr-catalyzed efficient alkynylation of sp3 C–H bonds adjacent to a nitrogen atom. J Am Chem Soc 126:11810–11811. https://doi.org/10.1021/ja0460763

    Article  CAS  PubMed  Google Scholar 

  68. Li Z, Li CJ (2005) Highly efficient copper-catalyzed nitro-Mannich type reaction: cross-dehydrogenative-coupling between sp3 C–H bond and sp3 C–H bond. J Am Chem Soc 127:3672–3673. https://doi.org/10.1021/ja050058j

    Article  CAS  PubMed  Google Scholar 

  69. Li Z, Li CJ (2006) Catalytic allylic alkylation via the cross-dehydrogenative-coupling reaction between allylic sp3 C–H and methylenic sp3 C–H bonds. J Am Chem Soc 128:56–57. https://doi.org/10.1021/ja056541b

    Article  CAS  PubMed  Google Scholar 

  70. Li Z, Yu R, Li H (2008) Iron-catalyzed C–C bond formation by direct functionalization of C–H bonds adjacent to heteroatoms. Angew Chem Int Ed Engl 47:7497–7500. https://doi.org/10.1002/anie.200802215

    Article  CAS  PubMed  Google Scholar 

  71. Lingamurthy M, Jagadeesh Y, Ramakrishna K, Rao BV (2016) DDQ-promoted benzylic/allylic sp(3) C–H activation for the stereoselective intramolecular C–N bond formation: applications to the total synthesis of (−)-codonopsinine, (+)-5-epi-codonopsinine, (+)-radicamine B, and (−)-codonopsinol. J Org Chem 81:1367–1377. https://doi.org/10.1021/acs.joc.5b02275

    Article  CAS  PubMed  Google Scholar 

  72. Lingayya R, Vellakkaran M, Nagaiah K, Nanubolu JB (2015) Ruthenium as a single catalyst for two steps: one-pot ruthenium(II)-catalyzed aerobic oxidative dehydrogenation of dihydroquinazolinones and cross-coupling/annulation to give N-fused polycyclic heteroarenes. Asian J Org Chem 4:462–469. https://doi.org/10.1002/ajoc.201500025

    Article  CAS  Google Scholar 

  73. Liu D, Lei A (2015) Iodine-catalyzed oxidative coupling reactions utilizing C–H and X–H as nucleophiles. Chem Asian J 10:806–823. https://doi.org/10.1002/asia.201403248

    Article  CAS  PubMed  Google Scholar 

  74. Liu L, Carroll PJ, Kozlowski MC (2015) Vanadium-catalyzed regioselective oxidative coupling of 2-hydroxycarbazoles. Org Lett 17:508–511. https://doi.org/10.1021/ol503521b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu WQ et al (2017) Visible light promoted synthesis of indoles by single photosensitizer under aerobic conditions. Org Lett 19:3251–3254. https://doi.org/10.1021/acs.orglett.7b01367

    Article  CAS  PubMed  Google Scholar 

  76. Long H et al (2017) Regio- and diastereoselective cross-dehydrogenative coupling of tetrahydropyridines with 1,3-dicarbonyl compounds. Org Lett 19:2146–2149. https://doi.org/10.1021/acs.orglett.7b00787

    Article  CAS  PubMed  Google Scholar 

  77. Lou J, Wang Q, Wu K, Wu P, Yu Z (2017) Iron-catalyzed oxidative C–H functionalization of internal olefins for the synthesis of tetrasubstituted furans. Org Lett 19:3287–3290. https://doi.org/10.1021/acs.orglett.7b01431

    Article  CAS  PubMed  Google Scholar 

  78. Lu H, Yang Q, Zhou Y, Guo Y, Deng Z, Ding Q, Peng Y (2014) Cross-coupling/annulations of quinazolones with alkynes for access to fused polycyclic heteroarenes under mild conditions. Org Biomol Chem 12:758–764. https://doi.org/10.1039/c3ob41955j

    Article  CAS  PubMed  Google Scholar 

  79. Lv L, Li Z (2016) Fe-catalyzed cross-dehydrogenative coupling reactions. Top Curr Chem 374:38. https://doi.org/10.1007/s41061-016-0038-y

    Article  CAS  Google Scholar 

  80. Maes J, Maes BUW (2016) Chapter five—a journey through metal-catalyzed CH functionalization of heterocycles: insights and trends. In: Scriven EFV, Ramsden CA (eds) Advances in heterocyclic chemistry, vol 120. Academic Press, pp 137–194. https://doi.org/10.1016/bs.aihch.2016.04.005

    Google Scholar 

  81. Maiti S, Achar TK, Mal P (2017) An organic intermolecular dehydrogenative annulation reaction. Org Lett 19:2006–2009. https://doi.org/10.1021/acs.orglett.7b00562

    Article  CAS  PubMed  Google Scholar 

  82. Maiti S, Mal P (2017) Dehydrogenative aromatic ring fusion for carbazole synthesis via C–C/C–N bond formation and alkyl migration. Org Lett 19:2454–2457. https://doi.org/10.1021/acs.orglett.7b01117

    Article  CAS  PubMed  Google Scholar 

  83. Marzo L, Pagire SK, Reiser O, Konig B (2018) Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed Engl 57:10034–10072. https://doi.org/10.1002/anie.201709766

    Article  CAS  PubMed  Google Scholar 

  84. McCusker JK, Walda KN, Dunn RC, Simon JD, Magde D, Hendrickson DN (1993) Subpicosecond 1MLCT -5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J Am Chem Soc 115:298–307. https://doi.org/10.1021/ja00054a043

    Article  CAS  Google Scholar 

  85. Meng QY et al (2017) Identifying key intermediates generated in situ from Cu(II) salt-catalyzed C–H functionalization of aromatic amines under illumination. Sci Adv 3:e1700666. https://doi.org/10.1126/sciadv.1700666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mitchell D, Cole KP, Pollock PM, Coppert DM, Burkholder TP, Clayton JR (2012) Development and a practical synthesis of the JAK2 inhibitor LY2784544. Org Process Res Dev 16:70–81. https://doi.org/10.1021/op200229j

    Article  CAS  Google Scholar 

  87. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483. https://doi.org/10.1021/Cr00039a007

    Article  CAS  Google Scholar 

  88. Moselage M, Li J, Ackermann L (2016) Cobalt-catalyzed C–H activation. ACS catal 6:498–525. https://doi.org/10.1021/acscatal.5b02344

    Article  CAS  Google Scholar 

  89. Murahashi S, Komiya N, Terai H, Nakae T (2003) Aerobic ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide. J Am Chem Soc 125:15312–15313. https://doi.org/10.1021/ja0390303

    Article  CAS  PubMed  Google Scholar 

  90. Murahashi S, Naota T, Yonemura K (1988) Ruthenium-catalyzed cytochrome-P-450 type oxidation of tertiary-amines with alkyl hydroperoxides. J Am Chem Soc 110:8256–8258. https://doi.org/10.1021/Ja00232a060

    Article  CAS  Google Scholar 

  91. Murahashi SI, Naota T, Miyaguchi N, Nakato T (1992) Ruthenium-catalyzed oxidation of tertiary-amines with hydrogen-peroxide in the presence of methanol. Tetrahedron Lett 33:6991–6994. https://doi.org/10.1016/S0040-4039(00)60914-0

    Article  CAS  Google Scholar 

  92. Narayan R, Manna S, Antonchick AP (2015) Hypervalent iodine(III) in direct carbon-hydrogen bond functionalization. Synlett 26:1785–1803. https://doi.org/10.1055/s-0034-1379912

    Article  CAS  Google Scholar 

  93. Narayanam JM, Stephenson CR (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113. https://doi.org/10.1039/b913880n

    Article  CAS  PubMed  Google Scholar 

  94. Narute S, Pappo D (2017) Iron phosphate catalyzed asymmetric cross-dehydrogenative coupling of 2-naphthols with beta-ketoesters. Org Lett 19:2917–2920. https://doi.org/10.1021/acs.orglett.7b01152

    Article  CAS  PubMed  Google Scholar 

  95. Nicholls TP, Constable GE, Robertson JC, Gardiner MG, Bissember AC (2015) Brønsted acid cocatalysis in copper(I)-photocatalyzed α-amino C–H bond functionalization. ACS Catal 6:451–457. https://doi.org/10.1021/acscatal.5b02014

    Article  CAS  Google Scholar 

  96. Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A (2013) Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C–H bonds using hydrogen peroxide. Org Lett 15:574–577. https://doi.org/10.1021/ol303389t

    Article  CAS  PubMed  Google Scholar 

  97. Ohkubo K, Fujimoto A, Fukuzumi S (2013) Photocatalytic monofluorination of benzene by fluoride via photoinduced electron transfer with 3-cyano-1-methylquinolinium. The journal of physical chemistry A 117:10719–10725. https://doi.org/10.1021/jp408315a

    Article  CAS  PubMed  Google Scholar 

  98. Ohkubo K, Kobayashi T, Fukuzumi S (2011) Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts. Angew Chem Int Ed Engl 50:8652–8655. https://doi.org/10.1002/anie.201102931

    Article  CAS  PubMed  Google Scholar 

  99. Otto S et al (2017) Photo-chromium: sensitizer for visible-light-induced oxidative C–H bond functionalization-electron or energy transfer? ChemPhotoChem 1:344–349. https://doi.org/10.1002/cptc.201700077

    Article  CAS  Google Scholar 

  100. Pan B, Liu B, Yue E, Liu Q, Yang X, Wang Z, Sun W-H (2016) A ruthenium catalyst with unprecedented effectiveness for the coupling cyclization of γ-amino alcohols and secondary alcohols. ACS Catal 6:1247–1253. https://doi.org/10.1021/acscatal.5b02638

    Article  CAS  Google Scholar 

  101. Pan J, Li X, Qiu X, Luo X, Jiao N (2018) Copper-catalyzed oxygenation approach to oxazoles from amines, alkynes, and molecular oxygen. Org Lett 20:2762–2765. https://doi.org/10.1021/acs.orglett.8b00992

    Article  CAS  PubMed  Google Scholar 

  102. Parisien-Collette S, Hernandez-Perez AC, Collins SK (2016) Photochemical synthesis of carbazoles using an [Fe(phen)3](NTf2)2/O2 catalyst system: catalysis toward sustainability. Org Lett 18:4994–4997. https://doi.org/10.1021/acs.orglett.6b02456

    Article  CAS  PubMed  Google Scholar 

  103. Parvatkar PT, Manetsch R, Banik BK (2018) Metal-free cross-dehydrogenative coupling (CDC): molecular iodine as a versatile catalyst/reagent for CDC reactions. Chem Asian J 0. https://doi.org/10.1002/asia.201801237

    Article  Google Scholar 

  104. Parvatkar PT, Parameswaran PS, Tilve SG (2012) Recent developments in the synthesis of five- and six-membered heterocycles using molecular iodine. Chem Eur J 18:5460–5489. https://doi.org/10.1002/chem.201100324

    Article  CAS  PubMed  Google Scholar 

  105. Patil MR, Dedhia NP, Kapdi AR, Kumar AV (2018) Cobalt(II)/ N-hydroxyphthalimide-catalyzed cross-dehydrogenative coupling reaction at room temperature under aerobic condition. J Org Chem 83:4477–4490. https://doi.org/10.1021/acs.joc.8b00203

    Article  CAS  PubMed  Google Scholar 

  106. Peng F, Li LL, Liu J, Chen ZW (2018) Copper-catalyzed oxidative cross-coupling/C–C bond cleavage/cyclization of aryl methyl ketones with 4-aminocoumarins: domino synthesis of dicoumarin-fused [1,5]-diazocines. Asian J Org Chem 7:1667–1673. https://doi.org/10.1002/ajoc.201800306

    Article  CAS  Google Scholar 

  107. Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O (2012) [Cu(dap)2Cl] as an efficient visible-light-driven photoredox catalyst in carbon-carbon bond-forming reactions. Chem Eur J 18:7336–7340. https://doi.org/10.1002/chem.201200967

    Article  CAS  PubMed  Google Scholar 

  108. Prier CK, Rankic DA, MacMillan DW (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ray D, Manikandan T, Roy A, Tripathi KN, Singh RP (2015) Ligand-promoted intramolecular dehydrogenative cross-coupling using a Cu catalyst: direct access to polycyclic heteroarenes. Chem Commun 51:7065–7068. https://doi.org/10.1039/c5cc01817j

    Article  CAS  Google Scholar 

  110. Reddy NNK, Donthiri RR, Ravi C, Adimurthy S (2016) Iodine-catalyzed [3 + 2] cyclization of 2-pyridylesters and chalcones: metal-free approach for the synthesis of substituted indolizines. Tetrahedron Lett 57:3243–3246. https://doi.org/10.1016/j.tetlet.2016.05.083

    Article  CAS  Google Scholar 

  111. Richter H, Garcia Mancheno O (2011) TEMPO oxoammonium salt-mediated dehydrogenative Povarov/oxidation tandem reaction of N-alkyl anilines. Org Lett 13:6066–6069. https://doi.org/10.1021/ol202552y

    Article  CAS  PubMed  Google Scholar 

  112. Romero NA, Margrey KA, Tay NE, Nicewicz DA (2015) Site-selective arene C–H amination via photoredox catalysis. Science 349:1326–1330. https://doi.org/10.1126/science.aac9895

    Article  CAS  PubMed  Google Scholar 

  113. Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057

    Article  CAS  PubMed  Google Scholar 

  114. Roslin S, Odell LR (2017) Visible-light photocatalysis as an enabling tool for the functionalization of unactivated C(sp3)-substrates. Eur J Org Chem 2017:1993–2007. https://doi.org/10.1002/ejoc.201601479

    Article  CAS  Google Scholar 

  115. Roudesly F, Oble J, Poli G (2017) Metal-catalyzed CH activation/functionalization: the fundamentals. J Mol Catal A: Chem 426:275–296. https://doi.org/10.1016/j.molcata.2016.06.020

    Article  CAS  Google Scholar 

  116. Sagadevan A, Ragupathi A, Hwang KC (2013) Visible-light-induced, copper(I)-catalysed C–N coupling between o-phenylenediamine and terminal alkynes: one-pot synthesis of 3-phenyl-2-hydroxy-quinoxalines. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology 12:2110–2118. https://doi.org/10.1039/c3pp50186h

    Article  CAS  Google Scholar 

  117. Sagadevan A, Ragupathi A, Hwang KC (2015) Photoinduced copper-catalyzed regioselective synthesis of indoles: three-component coupling of arylamines, terminal alkynes, and quinones. Angew Chem Int Ed Engl 54:13896–13901. https://doi.org/10.1002/anie.201506579

    Article  CAS  PubMed  Google Scholar 

  118. Sako M, Takeuchi Y, Tsujihara T, Kodera J, Kawano T, Takizawa S, Sasai H (2016) Efficient enantioselective synthesis of oxahelicenes using redox/acid cooperative catalysts. J Am Chem Soc 138:11481–11484. https://doi.org/10.1021/jacs.6b07424

    Article  CAS  PubMed  Google Scholar 

  119. Sako M, Takizawa S, Yoshida Y, Sasai H (2015) Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron: Asymmetry 26:613–616 https://doi.org/10.1016/j.tetasy.2015.05.002

    Article  CAS  Google Scholar 

  120. Sar D, Bag R, Yashmeen A, Bag SS, Punniyamurthy T (2015) Synthesis of functionalized pyrazoles via vanadium-catalyzed C–N dehydrogenative cross-coupling and fluorescence switch-on sensing of BSA protein. Org Lett 17:5308–5311. https://doi.org/10.1021/acs.orglett.5b02669

    Article  CAS  PubMed  Google Scholar 

  121. Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science 343:1239176. https://doi.org/10.1126/science.1239176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sha Q, Arman H, Doyle MP (2015) Three-component cascade reactions with 2,3-Diketoesters: a novel metal-free synthesis of 5-vinyl-pyrrole and 4-hydroxy-indole derivatives. Org Lett 17:3876–3879. https://doi.org/10.1021/acs.orglett.5b01855

    Article  CAS  PubMed  Google Scholar 

  123. Sharma R, Abdullaha M, Bharate SB (2017) Oxidant-controlled C-sp(2)/sp(3)-H cross-dehydrogenative coupling of N-heterocycles with benzylamines. J Org Chem 82:9786–9793. https://doi.org/10.1021/acs.joc.7b00856

    Article  CAS  PubMed  Google Scholar 

  124. Shen Y, Li M, Wang S, Zhan T, Tan Z, Guo CC (2009) An efficient copper-catalyzed oxidative Mannich reaction between tertiary amines and methyl ketones. Chem Commun 953–955. https://doi.org/10.1039/b819657e

  125. Shi X, Chen X, Wang M, Zhang X, Fan X (2018) Regioselective synthesis of acylated N-heterocycles via the cascade reactions of saturated cyclic amines with 2-Oxo-2-arylacetic acids. J Org Chem 83:6524–6533. https://doi.org/10.1021/acs.joc.8b00805

    Article  CAS  PubMed  Google Scholar 

  126. Shi X, Zhang F, Luo W-K, Yang L (2017) Oxidant-triggered C1-benzylation of isoquinoline by iodine-catalyzed cross-dehydrogenative-coupling with methylarenes. Synlett 13:494–498. https://doi.org/10.1055/s-0036-1588331

    Article  CAS  Google Scholar 

  127. Shuai Q, Yang L, Guo X, Basle O, Li CJ (2010) Rhodium-catalyzed oxidative C–H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. J Am Chem Soc 132:12212–12213. https://doi.org/10.1021/ja105396b

    Article  CAS  PubMed  Google Scholar 

  128. Shukla G, Srivastava A, Yadav D, Singh MS (2018) Copper-catalyzed one-pot cross-dehydrogenative thienannulation: chemoselective access to naphtho[2,1-b]thiophene-4,5-diones and subsequent transformation to benzo[a]thieno[3,2-c]phenazines. J Org Chem 83:2173–2181. https://doi.org/10.1021/acs.joc.7b03092

    Article  CAS  PubMed  Google Scholar 

  129. Singhal S, Jain SL, Sain B (2009) An efficient aerobic oxidative cyanation of tertiary amines with sodium cyanide using vanadium based systems as catalysts. Chem Commun 2371–2372. https://doi.org/10.1039/b820402k

  130. Skubi KL, Blum TR, Yoon TP (2016) Dual catalysis strategies in photochemical synthesis. Chem Rev 116:10035–10074. https://doi.org/10.1021/acs.chemrev.6b00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Song C, Dong X, Yi H, Chiang C-W, Lei A (2018) DDQ-catalyzed direct C(sp3)–H amination of alkylheteroarenes: synthesis of biheteroarenes under aerobic and metal-free conditions. ACS Catal 8:2195–2199. https://doi.org/10.1021/acscatal.7b04434

    Article  CAS  Google Scholar 

  132. Srimani D, Ben-David Y, Milstein D (2013) Direct synthesis of pyridines and quinolines by coupling of gamma-amino-alcohols with secondary alcohols liberating H2 catalyzed by ruthenium pincer complexes. Chem Commun 49:6632–6634. https://doi.org/10.1039/c3cc43227k

    Article  CAS  Google Scholar 

  133. Stevenson SM, Higgins RF, Shores MP, Ferreira EM (2017) Chromium photocatalysis: accessing structural complements to Diels-Alder adducts with electron-deficient dienophiles. Chem Sci 8:654–660. https://doi.org/10.1039/c6sc03303b

    Article  CAS  PubMed  Google Scholar 

  134. Stevenson SM, Shores MP, Ferreira EM (2015) Photooxidizing chromium catalysts for promoting radical cation cycloadditions. Angew Chem 127:6606–6610. https://doi.org/10.1002/ange.201501220

    Article  Google Scholar 

  135. Stevenson SM, Shores MP, Ferreira EM (2015) Photooxidizing chromium catalysts for promoting radical cation cycloadditions. Angew Chem Int Ed Engl 54:6506–6510. https://doi.org/10.1002/anie.201501220

    Article  CAS  PubMed  Google Scholar 

  136. Sunil UT, Sushma SK, Satish AD, Swapnil RS, Rajendra PP (2012) Molecular iodine: an efficient and versatile reagent for organic synthesis. Curr Org Chem 16:1485–1501. https://doi.org/10.2174/138527212800672574

    Article  Google Scholar 

  137. Suva Paria OR (2018) Visible light and copper complexes: a promising match in photoredox catalysis. In: Stephenson C, Yoon T, MacMillan DWC (eds) Visible light photocatalysis in organic chemistry. Wiely. https://doi.org/10.1002/9783527674145.ch7

    Chapter  Google Scholar 

  138. Takizawa S, Kodera J, Yoshida Y, Sako M, Breukers S, Enders D, Sasai H (2014) Enantioselective oxidative-coupling of polycyclic phenols. Tetrahedron 70:1786–1793. https://doi.org/10.1016/j.tet.2014.01.017

    Article  CAS  Google Scholar 

  139. Tan DW, Li HX, Zhu DL, Li HY, Young DJ, Yao JL, Lang JP (2018) Ligand-controlled copper(I)-catalyzed cross-coupling of secondary and primary alcohols to alpha-alkylated ketones, pyridines, and quinolines. Org Lett 20:608–611. https://doi.org/10.1021/acs.orglett.7b03726

    Article  CAS  PubMed  Google Scholar 

  140. Tan Z, Jiang H, Zhang M (2016) Ruthenium-catalyzed dehydrogenative beta-benzylation of 1,2,3,4-tetrahydroquinolines with aryl aldehydes: access to functionalized quinolines. Org Lett 18:3174–3177. https://doi.org/10.1021/acs.orglett.6b01390

    Article  CAS  PubMed  Google Scholar 

  141. Tang S, Liu K, Long Y, Gao X, Gao M, Lei A (2015) Iodine-catalyzed radical oxidative annulation for the construction of dihydrofurans and indolizines. Org Lett 17:2404–2407. https://doi.org/10.1021/acs.orglett.5b00912

    Article  CAS  PubMed  Google Scholar 

  142. Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A (2015) Tuning radical reactivity using iodine in oxidative C(sp(3))-H/C(sp)-H cross-coupling: an easy way toward the synthesis of furans and indolizines. Chem Commun 51:8769–8772. https://doi.org/10.1039/c5cc01825k

    Article  CAS  Google Scholar 

  143. Tanoue A, Yoo WJ, Kobayashi S (2014) Sulfuryl chloride as an efficient initiator for the metal-free aerobic cross-dehydrogenative coupling reaction of tertiary amines. Org Lett 16:2346–2349. https://doi.org/10.1021/ol500661t

    Article  CAS  PubMed  Google Scholar 

  144. Trost BM (1967) Dehydrogenation mechanisms. On the mechanism of dehydrogenation of acenaphthene by quinones. J Am Chem Soc 89:1847–1851. https://doi.org/10.1021/ja00984a017

    Article  CAS  PubMed  Google Scholar 

  145. Tsang ASK, Jensen P, Hook JM, Hashmi ASK, Todd MH (2011) An oxidative carbon–carbon bond-forming reaction proceeds via an isolable iminium ion. Pure Appl Chem 83:655–665. https://doi.org/10.1351/pac-con-11-01-01

    Article  CAS  Google Scholar 

  146. Tsang ASK, Park SJ, Todd MH (2015) Mechanisms of cross-dehydrogenative-coupling reactions. In: Li C-J (ed) From C–H to C–C bonds: cross-dehydrogenative-coupling. RSC Green Chemistry Series, vol 26. The Royal Society of Chemistry, pp 254–294. https://doi.org/10.1039/9781782620082-00254

  147. Tsang ASK, Todd MH (2009) Facile synthesis of vicinal diamines via oxidation of N-phenyltetrahydroisoquinolines with DDQ. Tetrahedron Lett 50:1199–1202. https://doi.org/10.1016/j.tetlet.2008.12.101

    Article  CAS  Google Scholar 

  148. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC (2017) The merger of transition metal and photocatalysis. Nat Rev Chem 1:0052. https://doi.org/10.1038/S41570-017-0052

    Article  CAS  Google Scholar 

  149. Ueda H, Yoshida K, Tokuyama H (2014) Acetic acid promoted metal-free aerobic carbon-carbon bond forming reactions at alpha-position of tertiary amines. Org Lett 16:4194–4197. https://doi.org/10.1021/ol5018883

    Article  CAS  PubMed  Google Scholar 

  150. Vuppalapati SVN, Lee YR (2012) Iodine-catalyzed efficient synthesis of azaarene substituted 3-hydroxy-2-oxindole derivatives through sp3 C–H functionalization. Tetrahedron 68:8286–8292. https://doi.org/10.1016/j.tet.2012.07.051

    Article  CAS  Google Scholar 

  151. Waghmode NA, Kalbandhe AH, Thorat PB, Karade NN (2016) Metal-free new synthesis of 1,3-naphthoxazines via intramolecular cross dehydrogenative-coupling reaction of 1-(α-aminoalkyl)-2-naphthols using hypervalent iodine(III) reagent. Tetrahedron Lett 57:680–683. https://doi.org/10.1016/j.tetlet.2015.12.117

    Article  CAS  Google Scholar 

  152. Wang B et al (2015) Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions. Chem Eur J 21:1184–1190. https://doi.org/10.1002/chem.201405356

    Article  CAS  PubMed  Google Scholar 

  153. Wang CS, Dixneuf PH, Soule JF (2018) Photoredox catalysis for building C–C bonds from C(sp(2))-H bonds. Chem Rev 118:7532–7585. https://doi.org/10.1021/acs.chemrev.8b00077

    Article  CAS  PubMed  Google Scholar 

  154. Wang L, Ackermann L (2013) Versatile pyrrole synthesis through ruthenium(II)-catalyzed alkene C–H bond functionalization on enamines. Org Lett 15:176–179. https://doi.org/10.1021/ol303224e

    Article  CAS  PubMed  Google Scholar 

  155. Waters WA (1946) Evidence for the dehydrogenation theory of oxidation. Trans Faraday Soc 42:184–190. https://doi.org/10.1039/TF9464200184

    Article  CAS  Google Scholar 

  156. Wendlandt AE, Suess AM, Stahl SS (2011) Copper-catalyzed aerobic oxidative C–H functionalizations: trends and mechanistic insights. Angew Chem Int Ed Engl 50:11062–11087. https://doi.org/10.1002/anie.201103945

    Article  CAS  PubMed  Google Scholar 

  157. Wenger OS (2018) Photoactive complexes with earth-abundant metals. J Am Chem Soc https://doi.org/10.1021/jacs.8b08822

    Article  CAS  PubMed  Google Scholar 

  158. Wu CJ, Zhong JJ, Meng QY, Lei T, Gao XW, Tung CH, Wu LZ (2015) Cobalt-catalyzed cross-dehydrogenative coupling reaction in water by visible light. Org Lett 17:884–887. https://doi.org/10.1021/ol503744a

    Article  CAS  PubMed  Google Scholar 

  159. Wu X-F, Beller M (2014a) Cobalt-catalyzed heterocycle synthesis. In: Economic synthesis of heterocycles: zinc, iron, copper, cobalt, manganese and nickel catalysts. RSC Catalysis Series. The Royal Society of Chemistry, pp 349–385. https://doi.org/10.1039/9781782620839-00349

  160. Wu X-F, Beller M (2014b) Copper-catalyzed heterocycle synthesis. In: Economic synthesis of heterocycles: zinc, iron, copper, cobalt, manganese and nickel catalysts. RSC Catalysis Series. The Royal Society of Chemistry, pp 159–348. https://doi.org/10.1039/9781782620839-00159

  161. Wu X-F, Beller M (2014c) Iron-catalyzed heterocycle synthesis. In: Economic synthesis of heterocycles: zinc, iron, copper, cobalt, manganese and nickel catalysts. RSC Catalysis Series. The Royal Society of Chemistry, pp 59–158. https://doi.org/10.1039/9781782620839-00059

  162. Wu X, Zhao P, Geng X, Wang C, Wu YD, Wu AX (2018) Synthesis of pyrrole-2-carbaldehyde derivatives by oxidative annulation and direct Csp3–H to C=O oxidation. Org Lett 20:688–691. https://doi.org/10.1021/acs.orglett.7b03821

    Article  CAS  PubMed  Google Scholar 

  163. Wu Y, Arenas I, Broomfield LM, Martin E, Shafir A (2015) Hypervalent activation as a key step for dehydrogenative ortho C–C coupling of iodoarenes. Chem Eur J 21:18779–18784. https://doi.org/10.1002/chem.201503987

    Article  CAS  PubMed  Google Scholar 

  164. Xiang L et al (2014) I2-mediated oxidative cyclization for synthesis of substituted indolizines. J Org Chem 79:10641–10647. https://doi.org/10.1021/jo5019574

    Article  CAS  PubMed  Google Scholar 

  165. Xiang M, Meng Q-Y, Gao X-W, Lei T, Chen B, Tung C-H, Wu L-Z (2016) Reactivity and mechanistic insight into the cross coupling reaction between isochromans and β-keto esters through C–H bond activation under visible light irradiation. Org Chem Front 3:486–490. https://doi.org/10.1039/C5QO00412H

    Article  CAS  Google Scholar 

  166. Xie J, Huang Y, Song H, Liu Y, Wang Q (2017) Copper-catalyzed aerobic oxidative [2 + 3] cyclization/aromatization cascade reaction: atom-economical access to tetrasubstituted 4,5-Biscarbonyl Imidazoles. Org Lett 19:6056–6059. https://doi.org/10.1021/acs.orglett.7b02767

    Article  CAS  PubMed  Google Scholar 

  167. Xie Z, Zan X, Sun S, Pan X, Liu L (2016) Organocatalytic enantioselective cross-dehydrogenative coupling of N-carbamoyl cyclic amines with aldehydes. Org Lett 18:3944–3947. https://doi.org/10.1021/acs.orglett.6b01625

    Article  CAS  PubMed  Google Scholar 

  168. Xing Y, Wang N-X, Zhang W (2015) Advances in transition-metal-catalyzed direct sp3-carbon–hydrogen bond functionalization. Synlett 26:2088–2098. https://doi.org/10.1055/s-0034-1381031

    Article  CAS  Google Scholar 

  169. Xue W-j, Gao Q-H, Wu A-x (2015) Molecular iodine mediated oxidative cross-coupling of sp3 C–H with sp2 C–H: direct synthesis of substituted indolo[2,3-b]carbazoles via formal [2 + 2+1 + 1] cyclization. Tetrahedron Lett 56:7115–7119. https://doi.org/10.1016/j.tetlet.2015.11.026

    Article  CAS  Google Scholar 

  170. Xue XS, Ji P, Zhou B, Cheng JP (2017) The essential role of bond energetics in C–H activation/functionalization. Chem Rev 117:8622–8648. https://doi.org/10.1021/acs.chemrev.6b00664

    Article  CAS  PubMed  Google Scholar 

  171. Yang Q, Li S, Wang J (2018) Cobalt-catalyzed cross-dehydrogenative coupling of imidazo[1,2-a]pyridines with isochroman using molecular oxygen as the oxidant. Org Chem Front 5:577–581. https://doi.org/10.1039/C7QO00875A

    Article  CAS  Google Scholar 

  172. Yang Y, Lan J, You J (2017) Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem Rev 117:8787–8863. https://doi.org/10.1021/acs.chemrev.6b00567

    Article  CAS  PubMed  Google Scholar 

  173. Yavari I, Hosseinpour R, Skoulika S (2015) Iodine-mediated diastereoselective cyclopropanation of arylidene malononotriles by 2,6-dimethylquinoline. Synlett 26:380–384. https://doi.org/10.1055/s-0034-1379496

    Article  CAS  Google Scholar 

  174. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. https://doi.org/10.1038/nchem.687

    Article  CAS  PubMed  Google Scholar 

  175. Yu JB, Zhang Y, Jiang ZJ, Su WK (2016) Mechanically induced Fe(III) catalysis at room temperature: solvent-free cross-dehydrogenative coupling of 3-benzylic indoles with methylenes/indoles. J Org Chem 81:11514–11520. https://doi.org/10.1021/acs.joc.6b02197

    Article  CAS  PubMed  Google Scholar 

  176. Zhang B, Cui Y, Jiao N (2012) Metal-free TEMPO-catalyzed oxidative C–C bond formation from Csp3–H bonds using molecular oxygen as the oxidant. Chem Commun 48:4498–4500. https://doi.org/10.1039/c2cc30684k

    Article  CAS  Google Scholar 

  177. Zhang C, Li TL, Wang LG, Rao Y (2017) Synthesis of diverse heterocycles via one-pot cascade cross-dehydrogenative-coupling (CDC)/cyclization reaction. Org Chem Front 4:386–391. https://doi.org/10.1039/c6qo00522e

    Article  CAS  Google Scholar 

  178. Zhang C, Tang C, Jiao N (2012) Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem Soc Rev 41:3464–3484. https://doi.org/10.1039/c2cs15323h

    Article  CAS  PubMed  Google Scholar 

  179. Zhang R, Qin Y, Zhang L, Luo S (2017) Oxidative synthesis of benzimidazoles, quinoxalines, and benzoxazoles from primary amines by ortho-quinone catalysis. Org Lett 19:5629–5632. https://doi.org/10.1021/acs.orglett.7b02786

    Article  CAS  PubMed  Google Scholar 

  180. Zhang Y, Schulz M, Wachtler M, Karnahl M, Dietzek B (2018) Heteroleptic diimine-diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: design strategies, photophysical properties and perspective applications. Coord Chem Rev 356:127–146. https://doi.org/10.1016/j.ccr.2017.10.016

    Article  CAS  Google Scholar 

  181. Zhang Z, Pi C, Tong H, Cui X, Wu Y (2017) Iodine-catalyzed direct C–H alkenylation of azaheterocycle N-oxides with alkenes. Org Lett 19:440–443. https://doi.org/10.1021/acs.orglett.6b03399

    Article  CAS  PubMed  Google Scholar 

  182. Zhao J, Fang H, Qian P, Han J, Pan Y (2014) Metal-free oxidative C(sp3)–H bond functionalization of alkanes and conjugate addition to chromones. Org Lett 16:5342–5345. https://doi.org/10.1021/ol502524d

    Article  CAS  PubMed  Google Scholar 

  183. Zhao M-N, Yu L, Hui R-R, Ren Z-H, Wang Y-Y, Guan Z-H (2016) Iron-catalyzed dehydrogenative [4 + 2] cycloaddition of tertiary anilines and enamides for the synthesis of tetrahydroquinolines with amido-substituted quaternary carbon centers. ACS Catal 6:3473–3477. https://doi.org/10.1021/acscatal.6b00849

    Article  CAS  Google Scholar 

  184. Zhao X, Liu T-X, Ma N, Zhang G (2017) In situ generated TEMPO oxoammonium salt mediated tandem cyclization of β-oxoamides with amine hydrochlorides for the synthesis of pyrrolin-4-ones. The J Org Chem 82:6125–6132. https://doi.org/10.1021/acs.joc.7b00686

    Article  CAS  PubMed  Google Scholar 

  185. Zhu Z-Q, Xiao L-J, Zhou C-C, Song H-L, Xie Z-B, Le Z-G (2018) A visible-light-promoted cross-dehydrogenative-coupling reaction of N-arylglycine esters with imidazo[1,2-a]pyridines. Tetrahedron Lett 59:3326–3331. https://doi.org/10.1016/j.tetlet.2018.07.047

    Article  CAS  Google Scholar 

  186. Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ (2011) Visible-light-induced oxidation/[3 + 2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew Chem Int Ed Engl 50:7171–7175. https://doi.org/10.1002/anie.201102306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Mejía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almasalma, A.A., Mejía, E. (2019). Mechanistic Pathways Toward the Synthesis of Heterocycles Under Cross-Dehydrogenative Conditions. In: Srivastava, A., Jana, C. (eds) Heterocycles via Cross Dehydrogenative Coupling. Springer, Singapore. https://doi.org/10.1007/978-981-13-9144-6_10

Download citation

Publish with us

Policies and ethics