Skip to main content

Agronomic Crop Responses and Tolerance to Metals/Metalloids Toxicity

  • Chapter
  • First Online:
Agronomic Crops

Abstract

The cultivation of crops for food production has been tremendously increased with the increasing world population. Various crops are being used for food, fiber and oil extraction, edible seeds and leaves, land reclamation, and fuel purposes. The applications of fertilizers has also been increased to fulfill high demand for agronomic crops. Several anthropogenic and natural activities have resulted in soil pollution in agriculture lands. Different types of contaminants including metals and metalloids accumulate in the soil ecosystem which are taken up by plant roots and cause various types of stresses in plant physiology which can lead to dysfunctions and disorders in many processes and mechanisms of plants. In response to the stress of metals and metalloids, plants show different types of mechanisms to resist or cope with this type of stress. Each and every plant shows different mechanisms against different heavy metals to reduce or tolerate their effects. Plants also secrete different enzymes through root exudates which also lessen the harmful impacts of metals and metalloids. Plants also exhibit defensive mechanisms by forming a mycorrhizal association. The tolerance of metals and metalloids stress is also governed at a cellular level, and different organelles are also involved in mitigating their toxic effects. Different cell organelles like plasma membrane and cell wall also show complete inhibition or permeable absorption of these contaminants. In response to the high stress of metals and metalloids, plants also secrete heat shock proteins to prevent the injuries caused by these pollutants. In addition to heat shock proteins, plants also excrete phytochelatins through their roots in the rhizosphere to fix these metals and their metalloids. Plants also exhibit response under these stresses at the molecular level and modify genes for expression of stress conditions. Therefore, it is clear that agronomic crops have adapted various kinds of mechanisms and processes which can reduce the toxic and harmful effects of metals and metalloids in order to show proper growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpor OB, Ohiobor GO, Olaolu TD (2014) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2(4):37–43

    Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Heavy metals in soils. Springer, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Alloway BJ, Jackson AP (1991) The behaviour of heavy metals in sewage sludge-amended soils. Sci Total Environ 100:151–176

    Article  CAS  PubMed  Google Scholar 

  • Amsbury S, Kirk P, Benitez-Alfonso Y (2017) Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. J Exp Bot 69(1):105–115

    Article  CAS  PubMed  Google Scholar 

  • Antosiewicz DM, Barabasz A, Siemianowski O (2014) Phenotypic and molecular consequences of overexpression of metal-homeostasis genes. Front Plant Sci 5

    Google Scholar 

  • Aroca A, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational. Agric Res 4:109–120

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2009) Uncommon heavy metals, metalloids and their plant toxicity: a review. In: Organic farming, Pest control and remediation of soil pollutants. Springer, Dordrecht, pp 275–317

    Chapter  Google Scholar 

  • Bačkor M, Váczi P, Barták M, Budóvá J, Dzubaj A (2007) Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium. Bryologist 110(1):100–107

    Article  Google Scholar 

  • Becker T, Dierschke T (2008) Vegetation response to high concentrations of heavy metals in the Harz Mountains. Phytocoenologia 38:255–265

    Article  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67(1–2):107–124

    Article  CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Scheckel K (2014) Remediation of heavy metal (loid)s contaminated soils e to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Heidelberg/Dordrecht/London/New York, pp 35–57

    Chapter  Google Scholar 

  • Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176

    Article  CAS  Google Scholar 

  • Cappa JJ, Pilon-Smits E (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  PubMed  Google Scholar 

  • Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick Jr WH (1998) Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217(3):189–199

    Article  CAS  Google Scholar 

  • Caverzan A, Bonifacio A, Carvalho FE, Andrade CM, Passaia G, Schünemann M, Margis-Pinheiro M (2014) The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Sci 214:74–87

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W (2018) Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with lanthanum and cadmium. Environ Pollut 241:607–615

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Shao M, Li Y (2008) The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. J Hydrol 360(1–4):242–251

    Article  Google Scholar 

  • Chen J, Wang WH, Wu FH, You CY, Liu TW, Dong XJ, He JX, Zheng HL (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362(1–2):301–318

    CAS  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res Int 10(4):256–264

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ortega R, Cushman JC, Ownby JD (1997) cDNA clones encoding 1, 3-[beta]-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114(4):1453–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Chen H, Zhu K, Jin Q, Xie Y, Cui J, Xia Y, Zhang J, Shen W (2014) Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo) glutathione and reactive oxygen species homeostases. PLoS One 9(10):109669

    Article  CAS  Google Scholar 

  • Cushman JC, Bohnert H (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Cuypers, A., Smeets, K., & Vangronsveld, J. (2009). Heavy metal stress in plants. Plant stress biology: From genomics to systems biology. pp 161–178

    Google Scholar 

  • Dal Corso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  Google Scholar 

  • Dawood M, Cao F, Jahangir MM, Zhang G, Wu F (2012) Alleviation of aluminum oxicity by hydrogen sulfide is related to elevated ATPase, and uppressed aluminum uptake and oxidative stress in barley. J Hazard Mater 209–210:121–128

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminum resistance and mineral nutrition. Febs Lett 581(12):2255–2262

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS (2010) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants. Science Publishers, Enfield, pp 177–203

    Chapter  Google Scholar 

  • Dundar E, Sonmez CD, Unver T (2015) Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential. Mol Genet Genomics 290:187–199

    Article  CAS  PubMed  Google Scholar 

  • Ent AV, Baker AJ, Reeves RD, Pollard AJ, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334

    Google Scholar 

  • Foucault Y, Lévèque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93(7):1430–1435

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133(2):365–371

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Goolsby EW, Mason CM (2015) Toward a more physiologically and evolutionary relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp 53:1

    CAS  Google Scholar 

  • Hasanuzzaman M, Alam M, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:1

    Google Scholar 

  • Hattab N, Motelica-Heino M, Faure O, Bouchardon J (2015) Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J Environ Manag 159:37–47

    Article  CAS  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, Teixeirada Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:37

    Google Scholar 

  • Huang Z, Zhao F, Hua J, Ma Z (2018) Prediction of the distribution of arbuscular mycorrhizal fungi in the metal (loid)-contaminated soils by the arsenic concentration in the fronds of Pteris vittata L. J Soils Sediments 18(7):2544–2551

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65(4):591–598

    Article  CAS  PubMed  Google Scholar 

  • Jamil A, Muhammad H, Rashid S, Abbasi GH, Ahmad R (2018) Differential expression of antioxidants, Fe and Zn transporter genes in wheat under Pb stress. Zemdirbyste-Agriculture 105(1):49

    Article  Google Scholar 

  • Jan S, Parray JA (2016) Metal tolerance strategy in plants. Approaches to heavy metal tolerance in plants. Life science. Springer, pp 19–32

    Google Scholar 

  • Jaskulak M, Rorat A, Grobelak A, Kacprzak M (2018) Antioxidative enzymes and expression of rbcL gene as tools to monitor heavy metal-related stress in plants. J Environ Manag 218:71–78

    Article  CAS  Google Scholar 

  • Kastori R, Petrović M, Petrović N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15(11):2427–2439

    Article  CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Ann Rev Plant Biol 61:517–534

    Article  CAS  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72(1):93–105

    Article  CAS  Google Scholar 

  • Kumar S, Kumari R, Sharma V (2015) Transgenerational inheritance in plants of acquired defence against biotic and abiotic stesses: Implications and applications

    Google Scholar 

  • Kumar D, Singh DP, Barman SC, Kumar N (2016) Heavy metal and their regulation in plant system: an overview. In: Plant responses to xenobiotics. Springer, Singapore, pp 19–38

    Chapter  Google Scholar 

  • Lange B (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551

    Article  CAS  PubMed  Google Scholar 

  • Lee CSL, Li X, Shi W, Cheung SCN, Thornton I (2006) Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356(1–3):45–61

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation and modification in plant systems. Plant Physiol 168(1):334–342

    Google Scholar 

  • Memon A, Aktoprakligil D, Ozdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25(3):111–121

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mitton FM, Ferreira JL, Gonzalez M, Miglioranza KS, Monserrat JM (2016) Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: useful variables for selecting plants for soil phytoremediation? Pestic Biochem Physiol 130:17–21

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163(4):753–758

    Article  CAS  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185(2–3):549–574

    Article  CAS  PubMed  Google Scholar 

  • Pätsikkä E, Kairavuo M, Šeršen F, Aro EM, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129(3):1359–1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  PubMed  Google Scholar 

  • Poot-Poot W, Teresa Hernandez-Sotomayor SM (2011) Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. IUBMB Life 63(10):864–872

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin/Heidelberg, pp 121–147

    Chapter  Google Scholar 

  • Rascio N, Navari-Izzo F (2010) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting. Plant Sci 180(2):169–181

    Article  PubMed  CAS  Google Scholar 

  • Rehman ZU, Shah WH (2005) Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chem 91(2):327–331

    Article  CAS  Google Scholar 

  • Saeideh N, Rashid J (2014) Effect of silver nanoparticles and Pb (NO 3) 2 on the yield and chemical composition of mung bean (Vigna radiata). J Stress Physiol Biochem 10:1

    Google Scholar 

  • Savvas D, Colla G, Rouphael Y, Schwarz D (2010) Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci Hortic 127(2):156–161

    Article  CAS  Google Scholar 

  • Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2013). Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. In Reviews of Environmental Contamination and Toxicology 221 (pp. 107–127). Springer, New York

    Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015a) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62(4):448–454

    Article  CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Dumat C (2015b) Heavy metal stress and crop productivity. In: Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  • Sharma A (2018) Gene expression analysis in medicinal plants under abiotic stress conditions. In: Plant metabolites and regulation under environmental stress. Elsevier Science, San Diego, pp 407–414

    Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Toth G, Hermann T, Silva MD, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Masler E, Rogers S (2018a) Responses of Heterodera glycines and Meloidogyne incognita infective juveniles to root tissues, root exudates, and root extracts from three plant species. Plant Dis 102:1733

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Meng X, Ma Y, Pu X, Zhong X (2018b) The prediction of combined toxicity of Cu–Ni for barley using an extended concentration addition model. Environ Pollut 242:136

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Zhou DM, Yuan XY, Zhang XH, Li Y (2018c) Modeling the interaction and toxicity of Cu-Cd mixture to wheat roots affected by humic acids, in terms of cell membrane surface characteristics. Chemosphere 199:76–83

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Deng Q, Wu F, Fu Z, Xu L (2011) Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Biol Trace Elem Res 144(1–3):1150–1158

    Article  CAS  PubMed  Google Scholar 

  • Yadav G, Srivastava PK, Singh VP, Prasad SM (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y (2018) Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Tahir Hayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, N., Nazir, N., Nauman, M., Hayat, M.T., Waquar-un-Nisa (2020). Agronomic Crop Responses and Tolerance to Metals/Metalloids Toxicity. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_12

Download citation

Publish with us

Policies and ethics