Skip to main content

A Proposed Method for the Use of the IBIS-FS in Experimental Modal Analysis of Buildings

  • Chapter
  • First Online:
  • 490 Accesses

Abstract

This chapter attempts to simplify experimental modal analysis for use in structural health monitoring through remote sensing of vibrations using the microwave interferometry technology. The commercially available Image By Interferometric Survey-Frequency for Structures (IBIS-FS) radar has been used in bridge and historical building monitoring with comparable results to accelerometers. In this chapter, a repeatable method for experimental modal analysis of a high-rise building with an irregular plan using the IBIS-FS is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pieraccini, M., Fratini, M., Parrini, F., Atzeni, C., Bartoli, G.: Interferometric radar vs. accelerometer for dynamic monitoring of large structures: an experimental comparison. NDT & E Int. 258–264 (2008)

    Google Scholar 

  2. Gentile, C., Crosetto, M.: Radar-based operational modal testing of large structures, two case studies in Spain. In: 6th International Operational Modal Analysis Conference. Gijon (2015)

    Google Scholar 

  3. Balageas, D.: Introduction to structural health monitoring. In: Balageas, D., Fritzen, C.-P., Güemes, A. (eds.) Structural Health Monitoring. London, UK, ISTE (2006)

    Google Scholar 

  4. Stabile, T.A., Perrone, A., Gallipoli, M.R., Giocoli, A., Pignatti, S., Palombo, A., Pascucci, S.: Joint application of non-invasive techniques to characterise the dynamic behaviour of engineering structures. In: Proceedings of 15 WCEE, Lisbon (2012)

    Google Scholar 

  5. Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)

    Article  Google Scholar 

  6. Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  7. Begg, R.D., Mackenzie, A.C., Dodds, C.J., Loland, O.: Structural integrity monitoring using digital processing of vibration signals. In: Proceedings, 8th Offshore Technology Conference, 3–6 May, Houston, Texas 2 (1994)

    Google Scholar 

  8. Poovarodom, N., Charoenpong, K.: Identification of dynamic properties of low-rise RC building by ambient vibration measurements during construction. In: The 14th World Conference on Earthquake Engineering, pp. 1–8. Beijing (2008)

    Google Scholar 

  9. Ren, W.-X., Zong, Z.-H.: Output-only modal parameter identification of civil engineering structures. Struct. Eng. Mech. 17(3–4), 429–444 (2004)

    Article  Google Scholar 

  10. Peeters, B., Roeck, G.D.: Reference-based Stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 13(6), 855–878 (1999)

    Article  ADS  Google Scholar 

  11. Yu, E., Skolnik, D., Whang, D.H., Wallace, J.W.: Forced vibration testing of a four-story RC building utilizing the nees@UCLA mobile field laboratory. In: Proceedings of the 8th U.S. National Conference on Earthquake Engineering (2006)

    Google Scholar 

  12. Schwarz, B.J., Richardson, M.H.: Experimental Modal Analysis. CSI Reliability Week (1999)

    Google Scholar 

  13. Avitabile, P.: Experimental modal analysis: a simple non-mathematical presentation. Sound Vib. 35(1), 20–31 (2001)

    Google Scholar 

  14. Diaferio, M., Foti, D., Giannoccaro, N.I.: Identification of the modal properties of a building of the Greek heritage. Key Eng. Mater. 628, 150–159 (2015)

    Article  Google Scholar 

  15. Simkin, G.B., Beskhyroun, S., Ma, Q.T., Wotherspoon, L.M., Ingham, J.M.: Experimental modal analyses of buildings during the Cook Strait earthquake sequence (2014)

    Google Scholar 

  16. Cunha, Á., Caetano, E., Magalhães, F., Moutinho, C.: From input-output to output-only modal identification of civil engineering structures. SAMCO (Structural Assessment, Monitoring and Control) (2006)

    Google Scholar 

  17. Bendat, J., Piersol, A.: Engineering Applications of Correlation and Spectral Analysis. Wiley, New York, NY (1993)

    MATH  Google Scholar 

  18. Hoa, L.T., Tamura, Y., Yoshida, A., Anh, N.D.: Frequency domain versus time domain modal identifications for ambient excited structures. In: International Conference on Engineering Mechanics and Automation (ICEMA), pp. 1–2 (2010)

    Google Scholar 

  19. Brincker, R., Ventura, C., Andersen, P.: Damping estimation by frequency domain decomposition. In: 19th International Modal Analysis Conference, vol. 9, pp. 698–703 (2001)

    Google Scholar 

  20. Magalhães, F., Caetano, E., Cunha, Á.: Challenges in the application of Stochastic modal identification methods to a cable-stayed bridge. J. Bridge Eng. 12(6), 746–754 (2007)

    Article  Google Scholar 

  21. Andersen, P., Brincker, R., Kirkegaard, P.H.: Theory of covariance equivalent ARMAV models of civil engineering structures. In: Proceedings-SPIE the International Society for Optical Engineering, SPIE International Society for Optical, pp. 518–524 (1996)

    Google Scholar 

  22. Bodeux, J.B., Golinval, J.C.: Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures. Smart Mater. Struct. 10(3), 479–489 (2001)

    Article  ADS  Google Scholar 

  23. Chauhan, S.: Subspace algorithms in modal parameter estimation for operational modal analysis, perspectives and practices. In: Proceedings of the IMAC XXXIV a conference and Exposition on Structural Dynamics. Orlando (2016)

    Google Scholar 

  24. Taylor, J.D.: Ultra-Wideband Radar Technology. CRC Press (2001)

    Google Scholar 

  25. Henderson, F.M., Lewis, A.J.: Manual of remote sensing. In: Principles and Applications of Imaging Radar, 3rd ed. Wiley and Sons (1998)

    Google Scholar 

  26. Gentile, C., Bernardini, G.: Radar-based measurement of deflections on bridges and large structures. Eur. J. Environ. Civil Eng. 14(4), 495–516 (2010)

    Article  Google Scholar 

  27. Gentile, C.: Radar-based measurement of deflections on bridges and large structures, advantages, limitations and possible applications. In: IV ECCOMAS Thematic Conference on Smart Structures and Materials, Porto, pp. 1–20 (2009)

    Google Scholar 

  28. Ingegneria Dei Sistemi, IBIS Surveyor v.01.00-User Manual. Pisa, Italy (2013)

    Google Scholar 

  29. Benedettini, F., Gentile, C.: FE modelling of a cable-stayed bridge based on operational modal analysis. In: Proceedings of the IMAC XXVI, a Conference and Exposition on Structural Dynamics (2008)

    Google Scholar 

  30. Pieraccini, M., Fratini, M., Parrini, F., Pinelli, G., Atzeni, C.: Dynamic survey of architectural heritage by high-speed microwave interferometry. IEEE Geosci. Remote Sens. Lett. 2, 28–30 (2005)

    Article  ADS  Google Scholar 

  31. Atzeni, C., Bicci, A., Dei, D., Fratini, M., Pieraccini, M.: Remote survey of the leaning tower of Pisa by interferometric sensing. IEEE Geosci. Remote Sens. Lett. 7(1), 185–189 (2009)

    Article  ADS  Google Scholar 

  32. Pieraccini, M.: Monitoring of civil infrastructures by interferometric radar: a review. Sci. World J. (2013)

    Google Scholar 

  33. Negulescu, C., Luzi, G., Crosetto, M., Raucoules, D., Roullé, A., Monfort, D., Pujades, L., Colas, B., Dewez, T.: Comparison of seismometer and radar measurements for the modal identification of civil engineering structures. Eng. Struct. 51, 10–22 (2013)

    Article  Google Scholar 

  34. Celebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., Wilson, S.: GPS monitoring of dynamic behaviour of long-period structures. Earthq. Spectra 15(1), 55–66 (1999)

    Article  Google Scholar 

  35. Park, H.S., Lee, H.M.: A new approach for health monitoring of structures, terrestrial laser scanning. Comput. Aided Civil Infrastruct. Eng. 22, 19–30 (2007)

    Article  Google Scholar 

  36. Knecht, A., Manetti, L.: Using GPS in structural health monitoring. In: SPIES’s 8th Annual International Symposium on Smart Structures and Materials. Newport Beach (2001)

    Google Scholar 

  37. Willy Weather, Melbourne Wind Forecast. Retrieved 2016, from Willy Weather. http://www.wind.willyweather.com.au/vic/melbourne/melbourne.html (2016)

  38. Russo, S.: Using experimental dynamic modal analysis in assessing structural integrity in historic buildings. Open Const. Build. Technol. J. 6, 357–368 (2014)

    Article  Google Scholar 

  39. Moayedi, F., Soleimani-Dashtaki, S., Ventura, E.C.: Determination of modal properties of an irregular 20-story concrete shear wall building. In: Proceedings of the 33rd IMAC, a Conference and Exposition on Structural Dynamics. Orlando (2015)

    Google Scholar 

  40. Chun, Y.-S., Yang, J.-S., Chang, K.-K., Lee, L.-H.: Approximate estimations of natural periods for apartment buildings with shear-wall dominant system. In: 12th World Conference on Earthquake Engineering. Auckland (2000)

    Google Scholar 

  41. Ellis, B.R.: An assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures. Proc. Inst. Civ. Eng. 69, 763–776 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sofi, M., Lumantarna, E., Mendis, P., Zhang, L. (2019). A Proposed Method for the Use of the IBIS-FS in Experimental Modal Analysis of Buildings. In: Zhou, Y., Wahab, M., Maia, N., Liu, L., Figueiredo, E. (eds) Data Mining in Structural Dynamic Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-0501-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0501-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0500-3

  • Online ISBN: 978-981-15-0501-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics