Skip to main content

Critical Growth Elliptic Problems with Choquard Type Nonlinearity: A Survey

  • Chapter
  • First Online:
Mathematical Modelling, Optimization, Analytic and Numerical Solutions

Part of the book series: Industrial and Applied Mathematics ((INAMA))

Abstract

This article deals with a survey of recent developments and results on Choquard equations where we focus on the existence and multiplicity of solutions of the partial differential equations which involves the nonlinearity of the convolution type. Because of its nature, these equations are categorized under the nonlocal problems. We give a brief survey on the work already done in this regard following which we illustrate the problems we have addressed. Seeking the help of variational methods and asymptotic estimates, we prove our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.O. Alves, F. Gao, M. Squassina, M. Yang, Singularly perturbed critical Choquard equations. J. Differ. Equ. 263(7), 3943–3988 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. C.O. Alves, L.S. Tavares, A Hardy-Littlewood-Sobolev type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent. Mediterr. J. Math. 16, 55 (2019), https://arxiv.org/pdf/1609.09558.pdf

  3. C.O. Alves, M. Yang, Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys. 55, 061502, 21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. C.O. Alves, M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. C.O. Alves, M. Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method. Proc. R. Soc. Edinburgh Sect. A. 146, 23–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.O. Alves, M. Yang, Existence of solutions for a nonlocal variational problem in \(\mathbb{R}^2\) with exponential critical growth. J. Convex Anal. 24, 1197–1215 (2017)

    MathSciNet  Google Scholar 

  7. C.O. Alves, D. Cassani, C. Tarsi, M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^n\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  MATH  Google Scholar 

  8. C.O. Alves, M.G. Figueiredo, M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv. Nonlinear Anal. 5, 331–345 (2016)

    MathSciNet  MATH  Google Scholar 

  9. R. Arora, J. Giacomoni, T. Mukherjee, K. Sreenadh, n-Kirchhoff Choquard equation with exponential nonlinearity. Nonlinear Anal. 186, 113–144 (2019), https://arxiv.org/pdf/1810.00583.pdf

  10. A. Bahri, J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Benci, C.R. Grisanti, A.M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with \(V(\infty )=0\). Topol. Methods Nonlinear Anal. 26, 203–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Benci, C.R. Grisanti, A.M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with \(V(\infty )=0\). Progr. Nonlinear Differ. Equ. Appl. 66, 53–65 (2005)

    MATH  Google Scholar 

  13. H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Brézis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 9, 137–151 (1979)

    MATH  Google Scholar 

  15. H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Brézis, L. Nirenberg, \(H^1\) versus \(C^1\) local minimizers. C. R. Acad. Sci. Paris. 317, 465–472 (1993)

    MathSciNet  MATH  Google Scholar 

  17. D. Cassani, J.V. Scahftingen, J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, pp. 1–24, https://doi.org/10.1017/prm.2018.135, https://arxiv.org/pdf/1709.09448.pdf

  18. W. Chen, S. Deng, The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities. Nonlinear Anal. Real World Appl. 27, 80–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Chen, M. Squassina, Critical Nonlocal Systems with Concave-Convex Powers. Adv. Nonlinear Stud. 16, 821–842 (2016)

    MathSciNet  MATH  Google Scholar 

  20. W. Choi, On strongly indefinite systems involving the fractional Laplacian. Nonlinear Anal. 120, 127–153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Cingolani, S. Secchi, M. Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973–1009 (2010)

    Article  MATH  Google Scholar 

  22. S. Cingolani, M. Clapp, S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angrew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Cingolani, M. Clapp, S. Secchi, Intertwining semiclassical solutions to a Schrödinger- Newton system. Discret. Contin. Dyn. Syst. Ser. S. 6, 891–908 (2013)

    MATH  Google Scholar 

  24. M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity. Commun. Part. Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Ding, F. Gao, M. Yang, Semiclassical states for Choquard type equations with critical growth: critical frequency case. https://arxiv.org/pdf/1710.05255.pdf

  26. L. Du, F. Gao, M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, https://arxiv.org/pdf/1810.11759.pdf

  27. L. Du, M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst. 39(10), 5847–5866 (2019), https://arxiv.org/pdf/1810.11186.pdf

    Article  MathSciNet  MATH  Google Scholar 

  28. L.F.O. Faria, O.H. Miyagaki, F.R. Pereira, M. Squassina, C. Zhang, The Brezis-Nirenberg problem for nonlocal systems. Adv. Nonlinear Anal. 5, 85–103 (2016)

    MathSciNet  MATH  Google Scholar 

  29. F. Gao, E.D. da Silva, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2018), pp. 1–34, https://arxiv.org/abs/1712.08264, to appear in Proc. R. Soc. Edinb., A Math

  30. F. Gao, M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality. Commun. Contemp. Math. 20(4), 1750037, (22 pages) (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Gao, M. Yang, On nonlocal Choquard equations with Hardy Littlewood Sobolev critical exponents. J. Math. Anal. Appl. 448, 1006–1041 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Gao, M. Yang, On the Brezis Nirenberg type critical problem for nonlinear Choquard equation. Sci. Chi. Math. 61, 1219–1242 (2018), https://doi.org/10.1007/s11425-016-9067-5

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Georgiev, G. Venkov, Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential. J. Differ. Equ. 251, 420–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Ghimenti, D. Pagliardini, Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc. Var. Partial Dif. 58, 167 (2019), https://arxiv.org/pdf/1804.03448.pdf

  35. J. Giacomoni, T. Mukherjee, K. Sreenadh, Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity. J. Math. Anal. Appl. 467, 638–672 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Goel, D., Sreenadh, K.: Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. Nonlinear Anal. 186, 162–186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Goel, V. Radulescu, K. Sreenadh, Coron problem for nonlocal equations involving Choquard nonlinearity. Adv. Nonlinear Stud. (2019), https://doi.org/10.1515/ans-2019-2064, https://arxiv.org/pdf/1804.08084.pdf

    Article  MathSciNet  Google Scholar 

  38. Z. Guo, S. Luo, W. Zou, On critical systems involving frcational Laplacian. J. Math. Anal. Appl. 446, 681–706 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. N. Hirano, C. Saccon, N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9, 197–220 (2004)

    MathSciNet  MATH  Google Scholar 

  41. N. Hirano, C. Saccon, N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem. J. Differ. Equ. 245, 1997–2037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Z. Huang, J. Yang, W. Yu, Multiple nodal solutions of nonlinear choquard equations. Electron. J. Differ. Equ. 268, 1–18 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Y. Lei, On the regularity of positive solutions of a class of Choquard type equations. Math. Z. 273, 883–905 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Lei, Qualitative analysis for the static Hartree-type equations. SIAM J. Math. Anal. 45, 388–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. G.-D. Li, C.-L. Tnag, Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Commun. Pure Appl. Anal. 18, 285–300 (2019)

    Article  MathSciNet  Google Scholar 

  46. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquards nonlinear equation. Stud. Appl. Math. 57 93-105 (1976/77)

    Article  MathSciNet  MATH  Google Scholar 

  47. E.H. Lieb, M. Loss, Analysis, 2nd edn. (AMS, 2001)

    Google Scholar 

  48. O. Lopes, M. Maris, Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254, 535–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Lü, Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Commun. Pure Appl. Anal. 15, 1781–1795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Rational Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. G.P. Menzala, On the nonexistence of solutions for an elliptic problem in unbounded domains. Funkcial. Ekvac. 26, 231–235 (1983)

    MathSciNet  MATH  Google Scholar 

  52. C. Mercuri, V. Moroz, J.V. Schaftingen, Groundstates and radial solutions to nonlinear SchrödingerPoissonSlater equations at the critical frequency. J. Calc. Var. 55, 146 (2016)

    Article  MATH  Google Scholar 

  53. V. Moroz, J.V. Schaftingen, Groundstates of nonlinear Choquard equations: Hardy Littlewood Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (12 pages) (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Moroz, J.V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. V. Moroz, J.V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. V. Moroz, J.V. Schaftingen, Least action nodal solutions for the quadratic Choquard equation. Proc. Am. Math. Soc. 145, 737–747 (2017)

    MathSciNet  MATH  Google Scholar 

  57. V. Moroz, J.V. Schaftingen, A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Mukherjee, K. Sreenadh, Positive solutions for nonlinear Choquard equation with singular nonlinearity. Complex Var. Elliptic Equ. 62, 1044–1071 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. T. Mukherjee, K. Sreenadh, Fractional Choquard Equation with critical nonlinearities. Nonlinear Differ. Equ. Appl. 24, 63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. T. Mukherjee, K. Sreenadh, On Concentration of least energy solutions for magnetic critical Choquard equations. J. Math. Anal. Appl. 464, 402–420 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Mukherjee, K. Sreenadh, On doubly nonlocal p-fractional coupled elliptic system. Topol. Methods Nonlinear Anal. 51, 609–636 (2018)

    MathSciNet  MATH  Google Scholar 

  62. E.D. Nezza, G. Palatucci, E. Valdinoci, Hitchhikers guide to the fractional sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Pekar, Untersuchung über die Elektronentheorie der Kristalle (Akademie Verlag, Berlin, 1954)

    MATH  Google Scholar 

  64. D. Salazar, Vortex-type solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 66, 663–675 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Z. Shen, F. Gao, M. Yang, Multiple solutions for nonhomogeneous Choquard equation involving Hardy Littlewood Sobolev critical exponent. Z. Angew. Math. Phys. 68, 61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Z. Shen, F. Gao, M. Yang, On critical Choquard equation with potential well. Discret. Contin. Dyn. Syst. A 38(7), 3669–3695 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. G. Tarantell, On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire. 9, 281–304 (1992)

    Google Scholar 

  69. K. Wang, J. Wei, On the uniqueness of solutions of a nonlocal elliptic system. Math. Ann. 365, 105–153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Wang, T. Yi, Uniqueness of positive solutions of the Choquard type equations. Appl. Anal. 96, 409–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Wang, Y. Dong, Q. He, L. Xiao, Multiple positive solutions for a coupled nonlinear Hartree type equations with perturbations. J. Math. Anal. Appl. 450, 780–794 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. T. Xie, L. Xiao, J. Wang, Exixtence of multiple positive solutions for Choquard equation with perturbation. Adv. Math. Phys. 2015, 760157 (2015)

    Article  MATH  Google Scholar 

  73. M. Yang, Semiclassical ground state solutions for a Choquard type equation in \(R^2\) with critical exponential growth. ESAIM: Control., Optim. Calc. Var. 24, 177–209 (2018)

    Google Scholar 

  74. H. Zhang, J. Xu, F. Zhang, Existence and multiplicity of solutions for a generalized Choquard equation. Comput. Math. Appl. 73, 1803–1814 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreenadh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sreenadh, K., Mukherjee, T. (2020). Critical Growth Elliptic Problems with Choquard Type Nonlinearity: A Survey. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds) Mathematical Modelling, Optimization, Analytic and Numerical Solutions. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-0928-5_10

Download citation

Publish with us

Policies and ethics