Skip to main content

Polyembryony in Encyrtid Parasitoids

  • Chapter
  • First Online:
Polyembryonic Insects

Part of the book series: Entomology Monographs ((ENTMON))

Abstract

The phenomenon of polyembryony in insects was first recognized by Marchal (1898) in the chalcidoid family Encyrtidae. This large family of small, solitary egg–larval endoparasitoids includes 460 genera, two of which exhibit polyembryony: Ageniaspis and Copidosoma (Ivanova-Kasas 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford DV (1976) Observations on Litomastix aretas, an encyrtid parasite of the strawberry tortrix moth. Ann Appl Biol 84:1–5

    Google Scholar 

  • Anderson DT (1972) The development of holometabolous insects. In: Counce J, Waddington CH (eds) Developmental systems: insects. Academic, New York, pp 165–242

    Google Scholar 

  • Askew RR (1983) A revision of the encyrtid genus Holcothorax (Hymenopter). Syst Entomol 8:135–136

    Article  Google Scholar 

  • Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67

    Article  CAS  PubMed  Google Scholar 

  • Baehrecke EH, Strand MR (1990) Embryonic morphology and growth of the polyembryonic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Int J Insect Morphol Embryol 19:165–175

    Article  Google Scholar 

  • Baehrecke EH, Grbic M, Strand MR (1992a) Serosa ontogeny in two embryonic morphs of Copidosoma floridanum: the influence of host hormones. J Exp Zool 262:30–39

    Article  Google Scholar 

  • Baehrecke EH, Strand MR, Williamson JL, Aiken JM (1992b) Stage-specific protein and mRNA synthesis during morphogenesis of the polyembryonic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Arch Insect Biochem Physiol 19:81–92

    Article  CAS  Google Scholar 

  • Bardsley A, McDonald K, Boswell R (1993) Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development 119:207–219

    CAS  PubMed  Google Scholar 

  • Berenbaum MR, Zangerl AR (2006) Parsnip webworms and host plants at home and abroad: trophic complexity in a geographic mosaic. Ecology 87:3070–3081

    Article  PubMed  Google Scholar 

  • Boswell RE, Mahowald AP (1985) Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43:97–104

    Article  CAS  PubMed  Google Scholar 

  • Brentrup D, Wolf R (1993) Pattern formation fails after blastoderm formation by rapid cell cycles in an artificially activated insect egg. Rouxs Arch Dev Biol 20:51–59

    Article  Google Scholar 

  • Buyckx JE (1948) Recherches sur un dryinide Aphelopus indivisus parasite de cicadines. Cellule 52:63–155

    Google Scholar 

  • Byers JR, Yu DS (1993) Parasitism of the army cutworm, Euxoa auxiliaris (GRT.) (Lepidoptera: Noctuidae), by Copidosoma bakeri (Howard) (Hymenoptera: Encyrtidae) and effect on crop damage. Can Entomol 125:329–335

    Article  Google Scholar 

  • Caltagirone LE (1970) Gynandromorphism in the polyembryonic encyrtid Pentalitomastix plethoricus Cali. (Hymenoptera, Encyrtidae). Boll Lab Entomol Agrar Filippo Silvestri 28:98–112

    Google Scholar 

  • Cavallin M (1971) La “polyembryonie substitutive” et le probleme de l’origine de la lignee germinale chez le Phasme Carausius moruosus Br. C R Acad Sci Paris Ser III 272:462–465

    CAS  Google Scholar 

  • Cavallin M (1976) La segregation de la lignee germinale chez le Phasme Carausius merrosus Br. Bull Soc Zool Fr 101(Suppl):15

    Google Scholar 

  • Chapman KB, Boeke JD (1991) Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65:483–492

    Article  CAS  PubMed  Google Scholar 

  • Cheng HH (1977) Insect parasites of the darksided cutworm, Euxoa messoria (Lepidoptera: Noctuidae), in Ontario. Can Entomol 109:137–142

    Article  Google Scholar 

  • Clausen CP (1972) Entomophagous insects. Hafner Publishing Company, New York

    Google Scholar 

  • Comrie LC (1938) Biological and cytological observations on tenthredinid parthenogenesis. Nature 142:877–878

    Article  Google Scholar 

  • Corley LS, White MA, Strand MR (2005) Both endogenous and environmental factors affect embryo proliferation in the polyembryonic wasp Copidosoma floridanum. Evol Dev 7:115–121

    Article  CAS  PubMed  Google Scholar 

  • Cross JC, Werb Z, Fisher SJ (1994) Implantation and placenta: key pieces of the developmental puzzle. Science 266:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Crowley PH, Saeki Y (2009) Balancing the size-number tradeoff in clonal broods. Open Ecol J 2:100–111

    Article  Google Scholar 

  • Crowley PH, Saeki Y, Switzer PV (2009) Evolutionarily stable oviposition and sex ratio in parasitoid wasps with single-sex broods. Ecol Entomol 34:163–175

    Article  Google Scholar 

  • Cruz YP (1981) A sterile defender morph in a polyembryonic hymenopterous parasite. Nature 294:446–477

    Article  Google Scholar 

  • Cruz YP (1986) Development of the polyembryonic parasite Copidosoma tanytmemus (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 79:121–127

    Article  Google Scholar 

  • Cruz YP, Oelhaf RC Jr, Jockusch EL (1990) Polymorphic precocious larvae in the polyembryonic parasitoid Copidosoma tanytmema (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 83:549–554

    Article  Google Scholar 

  • Daniel DM (1932) Macrocentrus ancylivorus Rohwer, a polyembryonic braconid parasite of the oriental fruit moth. N Y State Agric Exp Station Tech Bull 187:5–101

    Google Scholar 

  • Davidson EH (1990) How embryos work: a comparative view of diverse mode of cell fate specification. Development 108:365–389

    CAS  PubMed  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    Article  CAS  PubMed  Google Scholar 

  • Donnell DM, Strand MR (2006) Caste-based differences on gene expression in the polyembryonic wasp Copidosoma floridanum. Insect Biochem Mol Biol 36:141–153

    Article  CAS  PubMed  Google Scholar 

  • Donnell DM, Corley LS, Chen G, Strand MR (2004) Caste determination in a polyembryonic wasp involves inheritance of germ cells. Proc Natl Acad Sci U S A 101:10095–10100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoughe S, Nakamura T, Ewen-Campen B, Green DA II, Henderson L, Extavour CG (2014) BMP signaling is required for the generation of primordial germ cells in an insect. Proc Natl Acad Sci U S A 111:4133–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doutt RL (1947) Polyembryony in Copidosoma koehleri Blanchard. Am Nat 81:435–453

    Article  Google Scholar 

  • Driesch H (1892) The potency of the first two cleavage cells in echinoderm development: experimental production of partial and double formations. In: Willier BH, Oppenheimer JM (eds) Foundations of experimental embryology. Hafner, New York, p 1974

    Google Scholar 

  • Dutcher JD, Howitt AJ (1978) Bionomics and control of Lithocolletis blancardella in Michigan. J Econ Entomol 71:736–738

    Article  CAS  Google Scholar 

  • Edwards OR, Hoy MA (1998) Biology of Ageniaspis citricola (Hymenoptera: Encyrtidae), a parasitoid of the leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). Ann Entomol Soc Am 91:654–660

    Article  Google Scholar 

  • Eguchi M (1995) Alkaline-phosphatase isozymes in insects and comparison with mammalian enzyme. Comp Biochem Physiol 111:151–162

    Article  CAS  Google Scholar 

  • Ephrussi A, Lehman R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Jones TE, Extavour CG (2013) Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2:556–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Ferriere C (1926) Note sur un Chalcidien a developpement polyembryonique. Rev Suisse Zool 33:585–596

    Google Scholar 

  • Fitzgerald TD, Simeone JB (1971) Polyembryony in Paraleurocerus bicoloripes (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 64:774–777

    Article  Google Scholar 

  • Giron D, Dunn DW, Hardy ICW, Strand MR (2004) Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430:676–679

    Article  CAS  PubMed  Google Scholar 

  • Gokhman VE (2004) Chromosomes of Ageniaspis fuscicollis (Dalman, 1820) (Hymenoptera: Encyrtidae). Russ Entomol J 13:83–84

    Google Scholar 

  • Gordon SD, Strand MR (2009) The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol 219:445–454

    Article  PubMed  Google Scholar 

  • Gothilf S (1978) Establishment of the imported parasite Pentalitomastix plethoricus [Hym. encyrtidae], on Ectomyelois ceratoniae [Lep.: Phycitidae] in Israel. Entomophaga 23:299–302

    Article  Google Scholar 

  • Grandin N, Charbonneau M (1992) The increase in intracellular pH associated with Xenopus egg activation is a Ca (2+)-dependent wave. J Cell Sci 101:55–67

    CAS  PubMed  Google Scholar 

  • Grbic M (2000) “Alien” wasps and evolution of development. BioEssays 22:920–932

    Article  CAS  PubMed  Google Scholar 

  • Grbic C (2003) Polyembryony in parasitic wasps: evolution of a novel mode of development. Int J Dev Biol 47:633–642

    PubMed  Google Scholar 

  • Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360:254–256

    Article  Google Scholar 

  • Grbic M, Nagy LM, Carroll SB, Strand M (1996a) Polyembryonic development: insect pattern formation in cellularized environment. Development 122:795–804

    CAS  PubMed  Google Scholar 

  • Grbic M, Nagy LM, Strand MS (1996b) Pattern duplications in larvae of the polyembryonic wasp Copidosoma floridanum. Dev Genes Evol 206:281–287

    Article  CAS  PubMed  Google Scholar 

  • Grbic M, Nagy LM, Strand MR (1998) Development of polyembryonic insects: a major departure from typical insect embryogenesis. Dev Genes Evol 208:69–81

    Article  PubMed  Google Scholar 

  • Guerrieri E, Noyes J (2005) Revision of the European species of Copidosoma Ratzeburg (Hymenoptera: Encyrtidae), parasitoids of caterpillars (Lepidoptera). Syst Entomol 30:97–174

    Article  Google Scholar 

  • Guo X, Gao J, Li F, Wang J (2014) Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions. Sci Rep 4:5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon JB (1992) The generation of diversity in pattern in animal development. Cell 68:185–199

    Article  CAS  PubMed  Google Scholar 

  • Hardy ICW (1996) Precocious larvae in the polyembryonic parasitoid Copidosoma sosares (Hymenoptera: Encyrtidae). Entomol Berichten (Amsterdam) 56:88–92

    Google Scholar 

  • Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR (1997) What restricts the activity of mariner-like transposable elements? Trends Genet 13:197–201

    Article  CAS  PubMed  Google Scholar 

  • Hegner RW (1914) Studies on germ cells. III. The origin of the Keimbahn-Determinants in a parasitic hymenopteron, Copidosoma. Anat Anz 46:S51–S69

    Google Scholar 

  • Hegner RW (1915) Studies on germ cells. IV. Protoplasmic differentiation in the oocytes of certain hymenoptera. J Morphol 26:495–561

    Article  Google Scholar 

  • Horne PA (1990) The influence of introduced parasitoids on the potato tuber moth Phthorimaea operculella (Lepidoptera-Gelechiidae) in Victoria, Australia. Bull Entomol Res 80:159–163

    Article  Google Scholar 

  • Horne PA, Horne JA (1991) The effects of temperature and host density on the development and survival of Copidosoma koehleri. Entomol Exp Appl 59:289–292

    Article  Google Scholar 

  • Horner VL, Wolfner MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn 237:527–544

    Article  CAS  PubMed  Google Scholar 

  • Hoy MA, Jessey C (2004) Ageniaspis citricola (Hymenoptera: Encyrtidae) established in Bermuda. Fla Entomol 87:229–230

    Article  Google Scholar 

  • Hoy MA, Nguyen R (1994) Classical biological control of the citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae): theory, practice, art and science. Trop Lepidoptera 8:1–19

    Google Scholar 

  • Hoy MA, Nguyen R, Pomerinkae M, Bullock R, Hall D, Knapp J, Pena J, Browning H, Stansly P (1997) Distribution of A. citricola—a parasite of the citrus leafminer. Citrus Ind 78:51–52

    Google Scholar 

  • Hu J, Wang P, Zhang W (2015) Two types of embryos with different functions are generated in the polyembryonic wasp Macrocentrus cingulum (Hymenoptera: Braconidae). Arthropod Struct Dev 44:677–687

    Article  PubMed  Google Scholar 

  • Inagaki S, Numata K, Kondo T, Tomita M, Yasuda K et al (2005) Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells 10:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Yoshimura J, Iwabuchi K (2014) Gene expression of protein-coding and non-coding RNAs related to polyembryogenesis in the parasitic wasp, Copidosoma floridanum. PLoS One 9:e114372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanova-Kasas OM (1972) Polyembryony in insects. In: Counce JJ, Waddington CH (eds) Developmental systems: insects, vol 1. Academic, New York

    Google Scholar 

  • Iwabuchi K (1991) Early embryonic development of a polyembryonic wasp, Litomastix maculate Ishii, in vivo and in vitro. Appl Entomol Zool 26:563–570

    Article  Google Scholar 

  • Jancke O (1932) Die Kirschblutenmotte (Argyresthia pruniella L.) und ihr Parasit (Ageniaspis atricollis Dalm. Hym.). Gartenbauwissenschaft (Berlin) 6:303–386

    Google Scholar 

  • Johnson EF, Laing JE, Trottier R (1976) The seasonal occurrence of Lithocolletis blancardella (Gracillariidae), and its major natural enemies in Ontario apple orchards. Proc Entomol Soc Ont 107:31–45

    Google Scholar 

  • Katzner T, Cruz YP (1998) Survival of the polyembryonic parasitoid Copidosoma tanytmema (Hymenoptera: Encyrtidae) in envenomized larvae of its host Anagasta kuehniella (Lepidoptera: Pyralidae). Ann Entomol Soc Am 91:808–812

    Article  Google Scholar 

  • Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  CAS  PubMed  Google Scholar 

  • King PE, Rafai J (1970) A possible mechanism for initiating the parthenogenetic development of eggs in a parasitoid Hymenopteran, Nasonia vitripennis (Walker) (Pteromalidae). Entomologist 106:118–120

    Google Scholar 

  • Kolaczan CR, Heard SB, Segraves KA, Althoff DM, Nason JD (2009) Spatial and genetic structure of host-associated differentiation in the parasitoid Copidosoma gelechiae. J Evol Biol 22:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Kornhauser SI (1919) The sexual characteristics of the membracid, Thelia bimaculata (Fabr.). I. External changes induced by Aphelopus theliae (Gahan). J Morphol 32:531–636

    Article  Google Scholar 

  • Koscielski B (1981) Early development of Ageniaspis fuscicollis Dalm. (Chalcidoidea, Hymenoptera). Zool Pol 28:315–320

    Google Scholar 

  • Koscielski B, Koscielska MK (1985) Ultrastructural studies on the polyembryony in Ageniasis fuscicollis Dalm (Chalcidoidea, Hymenoptera). Zool Pol 32:203–215

    Google Scholar 

  • Koscielski B, Koscielska MK (1987) Fine structure of endoderm of embryo of Ageniaspis fuscicollis (Chalcidoidea, Hymenoptera). Recent advances in insect embryology in Japan and Poland, H. Ando, CZ. Jura, ISEBU Co. Ltd, Tsukuba, 273–279

    Google Scholar 

  • Koscielski B, Koscielska MK, Szroeder J (1978) Ultrastructure of the polygerm of Ageniaspis fuscicollis Dalm. (Chalcidoidea, Hymenoptera). Zoomorphologie 89:279–288

    Article  Google Scholar 

  • Lampert EC, Zangerl AR, Berenbaum MR, Ode PJ (2008) Tritrophic effects of xanthotoxin on the polyembryonic parasitoid Copidosoma sosares (Hymenoptera: Encyrtidae). J Chem Ecol 34:783–790

    Article  CAS  PubMed  Google Scholar 

  • Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiby RW (1922) The polyembryonic development of Copidosoma gelechiae with notes on its biology. J Morphol 37:195–285

    Article  Google Scholar 

  • Leiby RW (1926) The origin of mixed broods in polyembryonic Hymenoptera. Ann Entomol Soc Am 19:290–299

    Article  Google Scholar 

  • Leiby RW, Hill CC (1924) The polyembryonic development of Platygaster vernalis. J Agric Res 28:829–855

    Google Scholar 

  • Lessells CM (1985) Parasitoid foraging: should parasitism be density dependent? J Anim Ecol 54:27–41

    Article  Google Scholar 

  • Logvinoskaya TV (1983) A new species of Ageniaspis Dahlbom 1857 from Vietnam. Entomol Rev 62:150–152

    Google Scholar 

  • Loppin B, Karr TL (2005) Molecular genetics of insect fertilization. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier, Oxford, pp 213–236

    Chapter  Google Scholar 

  • Loreto EL, Carareto CM, Capy P (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100:545–554

    Article  CAS  PubMed  Google Scholar 

  • Lotfalizadeh H, Bab-Morad M (2015) Copidosoma boucheanum Ratzeburg (Hym.: Encyrtidae): new record from Iran. Turk J Zool 39:185–187

    Article  Google Scholar 

  • Maier CT (1984) Seasonal development and flight activity of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae), in Connecticut. Can Entomol 116:435–441

    Article  Google Scholar 

  • Mandour NS, Mahmoud MF, Osman MA-N, Qiu B (2008) Efficiency, intrinsic competition and interspecific host discrimination of Copidosoma desantisi and Trichogramma evanescens, two parasitoids of Phthorimaea operculella. Biocontrol Sci Technol 18:903–912

    Article  Google Scholar 

  • Marchal P (1898) Dissociation de l’oeuf en un cycle evolutif chez l’Encyrtus fuscicollis (Hymenoptera). C R Seances Acad Sci 126:662–664

    Google Scholar 

  • Marchal P (1904) Recherches sur la biologie et le developpement des Hymenopteres parasites. Arch Zool Exp GĂ©n 2:257–335

    Google Scholar 

  • Marone R, Hess D, Dankort D, Muller WJ, Hynes NE, Badache A (2004) Memo mediates ErbB2-driven cell motility. Nat Cell Biol 6:515–522

    Article  CAS  PubMed  Google Scholar 

  • Martin F (1914) Zur Entwicklungsgeschichte des polyembryonalen Charcidiers Ageniaspis (Encyrtus) fuscicollis Dalm. Z Wiss Zool 110:419–479

    Google Scholar 

  • Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21:1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaguchi A, Hiraoka T, Endo Y, Iwabuchi K (2006) Compatible invasion of a phylogenetically distant host embryo by a hymenopteran parasitoid embryo. Cell Tissue Res 324:167–173

    Article  PubMed  Google Scholar 

  • Nason JD, Heard SB, Williams FR (2002) Host associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae). Evolution 56:1475–1488

    Article  CAS  PubMed  Google Scholar 

  • Nenon JP (1972a) Culture in vitro des embryons d’un Hymenoptere endoparasite polyembryonnaire: Ageniaspis fuscicollis. Role des hormones de synthese. C R Seances Acad Sci 274:3299–3302

    CAS  Google Scholar 

  • Nenon JP (1972b) Culture in vitro des larves d’un Hymenoptere endoparasite polyembryonnaire: Ageniaspis fuscicollis. Role des hormones de synthese. C R Seances Acad Sci 274:3409–3412

    CAS  Google Scholar 

  • Nenon JP (1974) Nouvelles donnees sur la polyembryonie de l’entomophage Ageniasis fuscicollis Dalm (Hymenoptere, Chalcidien). Ann Embryol Morphog 7:151–157

    Google Scholar 

  • Nenon JP (1975) Influence du volume de different hotes sur le taux de polyembryonie d’Ageniaspis fuscicollis Hymenoptera, Chalcidoidea. Bull Soc Zool Fr 100:561–573

    Google Scholar 

  • Nenon JP (1976) Variations du taux de polyembryonie de parasitoide Ageniaspis fuscicollis Dalm. (Hymenoptere, Encyrtide) selon la temperature de developpement de ses hotes. Ann Zool Ecol Anim 8:161–175

    Google Scholar 

  • Nenon JP (1978a) La polyembryonie de Ageniaspis fuscicollis Thoms. (Hymenoptere, Chalcidien, Encyrtide). Bull Biol Fr Belg 42:13–107

    Google Scholar 

  • Nenon JP (1978b) Modulation du taux de polyembryonie d’Ageniaspis fuscicollis Dalm. (Hymenoptere, Encurtidae) selon les hotes adoptes pour son developpement. Ann Zool Ecol Anim 10:441–442

    Google Scholar 

  • Nenon JP (1978c) Synecologie d’Ageniaspis fuscicollis Thoms. (Hymenoptere Charcidien polyembryonnaire) parasitoide des Hyponomeutes (Lepidopteres). Ann Zool Ecol Anim 10:525–544

    Google Scholar 

  • Nieuwkoop PD (1947) Experimental observations on the origin and determination of the germ cells, and on the development of the lateral plates and germ ridges in the urodeles. Arch NĂ©erl Zool 8:1–205

    Article  Google Scholar 

  • Ninova M, Ronshaugen M, Griffiths-Jones S (2014) Fast-evolving microRNAs are highly expressed in the early embryo of Drosophila virilis. RNA 20:360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noskiewicz J, Poluszynski G (1935) Embryologische untersuchungen a Strepsipteren. II. Teil. Polyembryonie. Zool Pol 1:53–94

    Google Scholar 

  • Noyes JS (1985) Chalcidoids and biological control. Chalcid Forum 5:5–10

    Google Scholar 

  • Noyes JS (1988) Copidosoma truncatellum (Dalman) and C. floridanum (Ashmead) (Hymenoptera, Encyrtidae), two frequently misidentified polyembryonic parasitoids of caterpillars (Lepidoptera). Syst Entomol 13:197–204

    Article  Google Scholar 

  • Noyes JS (2017) Universal Chalcidoidea Database. World Wide Web Electronic Publication. http://www.nhm.ac.uk/chalcidoids

  • Ode PJ, Strand MR (1995) Progeny and sex allocation decisions of the polyembryonic wasp Copidosoma floridanum. J Anim Ecol 64:213–224

    Article  Google Scholar 

  • Ode PJ, Berenbaum MR, Zangerl AR, Hardy ICW (2004) Host plant, host chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104:388–400

    Article  CAS  Google Scholar 

  • Parker HL (1931) Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite in the European corn borer. USDA Tech Bull 230:1–63

    Google Scholar 

  • Parker HL, Thompson WB (1928) Contribution a la biologie des chalcidiens entomophages. Ann Soc Entomol Fr 97:425–465

    Google Scholar 

  • Patterson JT (1917) Studies of the biology of Paracopidosomopsis. III. Maturation and fertilization. Biol Bull 33:57–66

    Article  Google Scholar 

  • Patterson JT (1921) The development of Paracopidosomopsis. J Morphol 36:1–6

    Article  Google Scholar 

  • Peck O (1963) A catalogue of the Nearctic Chalcidoidea (Insecta; Hymenoptera). Can Entomol 95(S30):5–1092

    Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278

    Article  CAS  PubMed  Google Scholar 

  • Pottinger RP, LeRoux EJ (1971) The biology and dynamics of Lithocolletis blancardella (Lepidoptera: Gracillariidae) on apple in Quebec. Mem Entomol Soc Can 77:1–437

    Article  Google Scholar 

  • Prasad L, Ansari IA (2000) Effect of cold storage on the survival of Copidosoma varicorne (Nees) (Hymenoptera: Encyrtidae) a parasitoid of Dichomeris eridantis Meyr. (Lepidoptera: Gelechiidae). Indian Forester 126:647–652

    Google Scholar 

  • Quicke DLJ (1997) Parasitic wasps. Chapman & Hall, London

    Google Scholar 

  • Ridgway NM, Mahr DL (1985) Natural enemies of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae) in sprayed and unsprayed apple orchards in Wisconsin. Environ Entomol 14:459–463

    Article  Google Scholar 

  • Rothman LD, Darling DC (1991) Spatial density dependence: effects of scale, host spatial pattern and parasitoid reproductive strategy. Oikos 62:221–230

    Article  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeki Y, Crowley PH (2013) The size-number trade-off and components offitness in clonal parasitoid broods. Entomol Exp Appl 149:241–249

    Article  Google Scholar 

  • Saeki Y, Crowley PH, Fox CW, Potter DA (2009) A sex-specific size-number tradeoff in clonal broods. Oikos 118:1552–1560

    Article  Google Scholar 

  • Sakai H, Yokoyama T, Abe H, Fujii T, Suzuki MG (2013) Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori. Front Physiol 4:1–62013

    Article  Google Scholar 

  • Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238

    Article  Google Scholar 

  • Sarhan AA, Shoukry AA, Mandour NS (1997a) Biological studies on the polyembryonic parasitoid Copidosoma desantisi Annecke & Mynhardt (Hymenoptera: Encyrtidae). In: Proceedings of the 7th national conference of pests & diseases of vegetables & fruits, pp 586–607

    Google Scholar 

  • Sarhan AA, Shoukry AA, Mandour NS (1997b) Embryonic and postembryonic development of the polyembryonic parasitoid Copidosoma desantisi Annecke & Mynhardt (Hymenoptera: Encyrtidae). In: Proceedings of the 7th national conference of pests & diseases of vegetables and fruits, pp 608–623

    Google Scholar 

  • Sarra R (1915) Osservazioni biologiche sull’ Anarsia lineatella Z. dannosa al frutto del mandorlo. Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d’agricoltura in Portici 10:51–55

    Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffner JV (1959) Microlepidoptera and their parasites reared from field collections in the northeastern United States. U.S. Department of Agriculture Miscellaneous Publications, 767 p

    Google Scholar 

  • Schauff ME, LaSalle J, Wijesekara GA (1998) The genera of chalcid parasitoids (Hymenoptera: Calcidoidea) of citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). J Nat Hist 32:1001–1056

    Article  Google Scholar 

  • Schmerler S, Wessel GM (2011) Polar bodies—more a lack of understanding than a lack of respect. Mol Reprod Dev 78:3–8

    Article  CAS  PubMed  Google Scholar 

  • Schwalm F (1988) Insect morphogenesis. Karger, Basel

    Google Scholar 

  • Segoli M, Bouskila A, Harari AR, Keasar T (2009a) Developmental patterns in the polyembryonic parasitoid wasp Copidosoma koehleri. Arthropod Struct Dev 38:84–90

    Article  PubMed  Google Scholar 

  • Segoli M, Harari AR, Bouskila A, Keasar T (2009b) Brood size in a polyembryonic parasitoid wasp is affected by relatedness among competing larvae. Behav Ecol 20:761–767

    Article  Google Scholar 

  • Sierpinski Z (1963) Copidosoma geniculatum (Dalm.) (Hymenoptera, Chalcidoidea)—pasozyt skosnika tuzinka—Exoteleia dodecella L. (Lepidoptera, Gelechiidae). Polskie Pismo Entomol B (Zeszyt) 1–2:73–78

    Google Scholar 

  • Silvestri F (1906) Controbuzioni alla conoscenza biologica degli imenotteri parassiti. I. Biologia del Litomastix truncatellus (Dalm). Bolletino del Laboratorio di Zoologia generale e agrarian della P. Sciolo Superiore d’Agricoltura, Porciti 1:17–64

    Google Scholar 

  • Silvestri F (1908) Contribuzioni alla conoscenza biologica degli Imenotteri parasiti. 11. Sviluppo dell’Ageniaspisfuscicollis. Bolletino del Laboratorio di Zoologia generale e agrarian della P. Sciolo Superiore d’Agricoltura, Porciti 8:1–27

    Google Scholar 

  • Silvestri F (1914) Prime fasi di sviluppo del Copidosoma Buyssoni (Mayr), Imenottero Calcidide. Anat Anz 47:45–56

    Google Scholar 

  • Silvestri F (1922) Contribuzioni alla conoscenza degli insetti del Nocciuolo.Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d’agricoltura in Portici 16:221–301

    Google Scholar 

  • Silvestri F (1937) Insect polyembryony and its general biological aspects. Bull Mus Comp Zool 81:469–498

    Google Scholar 

  • Smith JM, Hoy MA (1995) Rearing methods for Ageniaspis citricola (Hymenoptera: Encyrtidae) and Cirrospilus quadristriatus (Hymenoptera: Eulophidae) released in a classical biological control program for the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). Fla Entomol 78:600–608

    Article  Google Scholar 

  • Smith MS, Milton I, Strand MR (2010) Phenotypically plastic traits regulate caste formation and soldier function in polyembryonic wasps. J Evol Biol 23:2677–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow SJ (1925) Observations on the cutworm, Euxoa auxiliaris Grote, and its principal parasites. J Econ Entomol 18:602–609

    Article  Google Scholar 

  • Speman H (1938) Embryonic development and induction. Am J Med Sci 196:738

    Article  Google Scholar 

  • Stavraki H (1970) Contribution a l’inventaire du complexe parasitaire de queloques insects nuisibles a l’Olivier en Grece. Entomophaga 15:225–231

    Article  Google Scholar 

  • Stiling PD (1987) The frequency of density dependence in insect host-parasitoid system. Ecology 68:844–856

    Article  Google Scholar 

  • Stireman JO III, Nason JD, Heard SB (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod insect community. Evolution 59:2573–2587

    Article  CAS  PubMed  Google Scholar 

  • Stireman JO III, Nason JD, Heard SB, Seehawer JM (2006) Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proc R Soc B 273:523–530

    Article  CAS  PubMed  Google Scholar 

  • Strand MR (1989) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomol Exp Appl 50:37–46

    Article  Google Scholar 

  • Strand MR, Grbic M (1997) The development and evolution of polyembryonic insects. Curr Top Dev Biol 35:121–160

    Article  CAS  PubMed  Google Scholar 

  • Strand MR, Ode PJ (1990) Chromosome number of the polyembryonic parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 83:834–837

    Article  Google Scholar 

  • Sucena E, Vanderberghe K, Zhurov V, Grbic M (2014) Reversion of developmental mode in insects: evolution from long germband to short germband in the polyembryonic wasp Macrocentrus cingulum Brischke. Evol Dev 16:233–246

    Article  PubMed  Google Scholar 

  • Tam PP, Zhou SX (1996) The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 178:124–132

    Article  CAS  PubMed  Google Scholar 

  • Tremblay E, Caltagirone LE (1973) Fate of polar bodies in insects. Annu Rev Entomol 18:421–444

    Article  Google Scholar 

  • Turner FR, Mahowald AP (1976) Scanning electron microscopy of Drosophila embryogenesis. I. The structure of the egg envelopes and formation of the cellular blastoderm. Dev Biol 50:95–108

    Article  CAS  PubMed  Google Scholar 

  • Ujiye T (1987) Biological studies on Holcothorax testaceipes (Hymenoptera: Encyrtidae), a predominant parasitoid of the apple leaf-miner, Phyllonorycter ringoniella (Lepidoptera: Gracillariidae). Bull Fruit Tree Res Station C 14:69–95

    Google Scholar 

  • Uka D, Takahashi-Nakaguchi A, Yoshimura J, Iwabuchi K (2013) Male soldiers are functional in the Japanese strain of a polyembryonic wasp. Sci Rep 3:2312

    Article  PubMed  PubMed Central  Google Scholar 

  • Walde SJ, Murdoch WW (1988) Spatial density dependence in parasitoids. Annu Rev Entomol 33:441–466

    Article  Google Scholar 

  • Wang T, Laing JE (1989a) Reproductive biology of Holcothorax testaceipes (Hymenoptera: Encyrtidae) and its effect on development of the host, Phylionorycter blancardella (Lepidoptera: Gracillaridae). Proc Entomol Soc Ont 120:35–41

    Google Scholar 

  • Wang T, Laing JE (1989b) Polyembryony in Holcothorax testaceipes (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 82:725–729

    Article  Google Scholar 

  • Wang H, Hill K, Perry SE (2004) An Arabidopsis RNA lariat debranching enzyme is essential for embryogenesis. J Biol Chem 279:1468–1473

    Article  CAS  PubMed  Google Scholar 

  • Weires RW, Davis DR, Leeper JR, Reissig WH (1980) Distribution and parasitism of gracillariid leafminers on apple in the northeast. Ann Entomol Soc Am 73:541–546

    Article  Google Scholar 

  • Went DF, Krause G (1973) Normal development of mechanically activated unlaid eggs of an endoparasitic Hymenopteran. Nature 244:454–455

    Article  Google Scholar 

  • Whitfield JB (1992) Phylogeny of the non-Aculeate Apocrita and the evolution of parasitism in the Hymenoptera. J Hymenopt Res 1:3–14

    Google Scholar 

  • Whittle CA, Extavour CG (2017) Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proc Natl Acad Sci U S A 114:5784–5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan-Zhou Z, Fang Y, Chao-Dong Z (2008) A preliminary phylogenetic study of Copidosoma spp. (Hymenoptera: Encyrtidae) associated with Noctuidae (Lepidoptera) based on 28S rDNA D2 sequence. Acta Entomol Sin 51:992–996

    Google Scholar 

  • Yin C, Li M, Hu J, Lang K, Chen Q, Liu J, Guo D, He K, Dong Y, Luo J, Song Z, Walters JR, Zhang W, Li F, Chen X (2018) The genomic features of parasitism, polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics 19:420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ying Y, Zhao GQ (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 232:484–492

    Article  CAS  PubMed  Google Scholar 

  • Ying Y, Qi X, Zhao GQ (2001) Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A 98:7858–7862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Chen F-Q, Yen S-H, Tu L-H, Zhu C-D, Guerrieri E, Zhang Y-Z (2014) Preliminary phylogeny of the genus Copidosoma (Hymenoptera, Encyrtidae), polyembryonic parasitoids of Lepidoptera. Syst Entomol 39:325–334

    Article  Google Scholar 

  • Zappala L, Hoy MA (2004) Reproductive strategies and parasitization behavior of Ageniaspis citricola, a parasitoid of the citrus leafminer Phyllocnistis citrella. Entomol Exp Appl 113:135–143

    Article  Google Scholar 

  • Zhurov V, Terzin T, Grbic M (2004) Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432:746–769

    Article  CAS  Google Scholar 

  • Zhurov V, Terzin T, Grbic M (2007) (In)discrete charm of the polyembryony: evolution of embryo cloning. Cell Mol Life Sci 64:2790–2798

    Article  CAS  PubMed  Google Scholar 

  • Zondag L, Dearden PK, Wilson MJ (2012) Deep sequencing and expression of microRNAs from early honeybee (Apis mellifera) embryos reveals a role in regulating early embryonic patterning. BMC Evol Biol 12:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwabuchi, K. (2019). Polyembryony in Encyrtid Parasitoids. In: Polyembryonic Insects. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-15-0958-2_2

Download citation

Publish with us

Policies and ethics