Skip to main content

iPS Cell and Renal Regenerative Medicine

  • Chapter
  • First Online:
Acute Kidney Injury and Regenerative Medicine

Abstract

Recent progress in kidney regeneration research using induced pluripotent stem (iPS) cells has enabled the induction of nephron progenitor cells (NPCs) and the reconstruction of kidney organoids that include nephron structures in vitro. In this article, we first explain the history of iPS cells and kidney regeneration research. Next, we summarize the current status of cell therapies including the mechanisms of action using human iPS cell-derived NPCs against kidney diseases, such as acute kidney injury (AKI). These therapies would benefit from the development of expansion cultures and purification methods for NPCs. Finally, we discuss the future perspectives of cell therapies and other possible applications using human iPS cell-derived NPCs against kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coresh J. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  PubMed  Google Scholar 

  2. Japan nephrology society. [Special issue: Clinical practice guidebook for diagnosis and treatment of chronic kidney disease 2012 (CKD guideline 2012)]. Nihon Jinzo Gakkai Shi. 2012;54:1034–191.

    Google Scholar 

  3. Lysaght MJ. Maintenance dialysis population dynamics: current trends and long-term implications. J Am Soc Nephrol. 2002;13(suppl 1):S37–40.

    PubMed  Google Scholar 

  4. Nitta K. 2018 Annual Dialysis Data Report, JSDT Renal Data Registry. Nihon Toseki Igakkai Zasshi. 2019;52:679–754.

    Google Scholar 

  5. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  6. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–71.

    Article  CAS  PubMed  Google Scholar 

  9. Yu J. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  10. Okita K. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

    Article  CAS  PubMed  Google Scholar 

  11. Okita K. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31:458–66.

    Article  CAS  PubMed  Google Scholar 

  12. Takeda Y. Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep.2018;38.

    Google Scholar 

  13. Karagiannis P. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev. 2019;99(1):79–114.

    Article  CAS  PubMed  Google Scholar 

  14. Mandai M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.

    Article  CAS  PubMed  Google Scholar 

  15. Kikuchi T. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 2017;548:592–6.

    Article  CAS  PubMed  Google Scholar 

  16. Hino K. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest. 2017;127:3339–52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moriya N. Mesoderm and neural inductions on newt ectoderm by activin A. Dev Growth Differ. 1992;34:589–94.

    Article  CAS  Google Scholar 

  18. Osafune K. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006;133:151–61.

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi A. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Z. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell. 2016;19:516–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mugford JW. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324:88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. James RG. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development. 2006;133:2995–3004.

    Article  CAS  PubMed  Google Scholar 

  23. Tena JJ. Odd-skipped genes encode repressors that control kidney development. Dev Biol. 2007;301:518–31.

    Article  CAS  PubMed  Google Scholar 

  24. Song B. The directed differentiation of human iPS cells into kidney podocytes. PLoS One. 2012;7:e46453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mae SI. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun. 2013;4:1367.

    Article  PubMed  CAS  Google Scholar 

  26. Araoka T. Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One. 2014;9:e84881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xia Y. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15:1507–15.

    Article  CAS  PubMed  Google Scholar 

  28. Takasato M. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118–26.

    Article  CAS  PubMed  Google Scholar 

  29. Lam AQ. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol. 2014;25:1211–25.

    Article  CAS  PubMed  Google Scholar 

  30. Kang M. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PLoS One. 2014;9:e94888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Taguchi A. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.

    Article  CAS  PubMed  Google Scholar 

  32. Morizane R. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33:1193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imberti B. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep. 2015;5:8826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Toyohara T. Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med. 2015;4:980–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takasato M. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lindström NO. Conserved and divergent features of human and mouse kidney organogenesis. J Am Soc Nephrol. 2018;29:785–805.

    PubMed  PubMed Central  Google Scholar 

  37. Coca SG. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.

    Article  PubMed  Google Scholar 

  38. Takaori K. Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol. 2016;27:2393–406.

    Article  PubMed  Google Scholar 

  39. Hoshina A. Development of new method to enrich human iPSC-derived renal progenitors using cell surface markers. Sci Rep. 2018;8:6375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Self M. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25:5214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barak H. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell. 2012;22:1191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dudley AT. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown AC. A synthetic niche for nephron progenitor cells. Dev Cell. 2015;34:229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanigawa S. Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Rep. 2016;15:801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mae S, Ryosaka M. Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochem Biophys Res Commun. 2018;495:954–61.

    Article  CAS  PubMed  Google Scholar 

  46. Taguchi A. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017;21:730–746.e6.

    Article  CAS  PubMed  Google Scholar 

  47. Osafune K. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008;26:313–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kajiwara M. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109:12538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu H. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 2018;23:869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alexander N. Combes, Luke Zappia, Pei Xuan Er, Alicia Oshlack, Melissa H. Little. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Medicine. 2019;11:(1).

    Google Scholar 

  51. Yoshimura Y. Manipulation of nephron-patterning signals enables selective induction of podocytes from human pluripotent stem cells. J Am Soc Nephrol. 2019;30:304–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fukuda T. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res. 2017;352:333–45.

    Article  CAS  PubMed  Google Scholar 

  53. Da Sacco SA. Direct isolation and characterization of human nephron progenitors. Stem Cells Transl Med. 2017;6:419–33.

    Article  PubMed  CAS  Google Scholar 

  54. Miki K. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell. 2015;16:699–711.

    Article  CAS  PubMed  Google Scholar 

  55. Song JJ. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Homan KA. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Musah S. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng.2017;1.

    Google Scholar 

  58. Welk RA. A community hospital experience with total parathyroidectomy and autotransplantation for renal hyperparathyroidism. Am Surg. 1987;53:622–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Peter Karagiannis, CiRA, Kyoto University, for critically reading and revising the manuscript. The research of authors is supported by the Japan Agency for Medical Research and Development (AMED) through its research grant “Core Center for iPS Cell Research and The Acceleration Program for Intractable Diseases Research utilizing Disease-specific iPS cells, Research Center Network for Realization of Regenerative Medicine” and “Practical Research Project for Rare/Intractable Diseases” to K.O., and the JSPS Grants-in-Aid for Scientific Research (B) 18H02826 for K.O. and for Scientific Research (C) 18K07043 for T.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Osafune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araoka, T., Osafune, K. (2020). iPS Cell and Renal Regenerative Medicine. In: Terada, Y., Wada, T., Doi, K. (eds) Acute Kidney Injury and Regenerative Medicine . Springer, Singapore. https://doi.org/10.1007/978-981-15-1108-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1108-0_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1107-3

  • Online ISBN: 978-981-15-1108-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics