Skip to main content

Generation of Image Captions Using VGG and ResNet CNN Models Cascaded with RNN Approach

  • Conference paper
  • First Online:
Machine Intelligence and Signal Processing (MISP 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1085))

Included in the following conference series:

Abstract

Recent advancements in technology have made available a variety of image capturing devices, ranging from handheld mobiles to space-grade rovers. This has generated a tremendous visual data, which has made a necessity to organize and understand this visual data. Thus, there is a need to caption thousands of such images. This has resulted in tremendous research in computer vision and deep learning. Inspired by such recent works, we present an image caption generating system that uses convolutional neural network (CNN) for extracting the feature embedding of an image and feed that as an input to long short-term memory cells that generates a caption. We are using two pre-trained CNN models on ImageNet, VGG16 and ResNet-101. Both the models were tested and compared on Flickr8K dataset. Experimental results on this dataset demonstrate that the proposed architecture is as efficient as the state-of-the-art multi-label classification models. Experimental results on public benchmark dataset demonstrate that the proposed architecture performs as efficiently as the state-of-the-art image captioning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: IEEE International Conference on Computer Vision ICCV, pp 1635–1643 (2015). arXiv:1503.01640v2

  2. Das, S.: CNN architectures: Lenet, alexnet, vgg, googlenet, resnet and more (2017). https://medium.com/@sidereal/cnns-architectures-lenetalexnet-vgg-googlenet-resnet-and-more666091488df5

  3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., FeiFei, L.: Imagenet: a large-scale hierarchical image database. IEEE Comput. Vis. Patt Recogn. (CVPR) 248–255 (2009)

    Google Scholar 

  4. Fang, H., Gupta, S., Iandola, F., Srivastava, R., Deng, L., Dollar, P., Gao, J., He, X., Mitchell, M., Platt, J.C., Zitnick, C.L., Zweig, G.: From captions to visual concepts and back. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp 1473–1482 (2015). arXiv:1411.4952v3

  5. Frossard, D.: VGG in tensorflow (2016). https://www.cs.toronto.edu/~frossard/post/vgg16/

  6. Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778, June 2016. arXiv:1512.03385v1

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking task: data, models and evaluation metrics. J. Artif. Intell. Res. 47, 853–899 (2013)

    Article  MathSciNet  Google Scholar 

  10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. ACM international conference on Multimedia, pp. 675–678, Nov 2014. arXiv:1408.5093v1

  11. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. IEEE Trans. Patt. Anal. Mach. Intell. 14(8) (2015)

    Google Scholar 

  12. Kiros, R., Salakhutdinov, R., Zemel, R.: Multimodal neural language models. In International Conference on Machine Learning, pp 595–603 (2014)

    Google Scholar 

  13. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings with multimodal neural language models. In: Computing Research Repository (CoRR) in Machine Learning (2014). arXiv: 1411.2539v1

    Google Scholar 

  14. Lin, T.-Y., Maire, M., Belongie, S.. Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Springer European Conference on Computer Vision ECCV, pp. 740–755. Springer, Berlin (2014)

    Chapter  Google Scholar 

  15. Olah, C.: Understanding LSTM networks (2015). http://colah.github.io/posts/2015-08-Understanding-LSTMs/

  16. Redmon, J., Farhadi, A.: YOLO 9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2007. arXiv:1612.08242v1

  17. Simonyan, M., Zisserman, A.: Very deep convolutional networks for large scale image recognition. In: International Conference on Learning Representations (ICLR) (2015). arXiv:1409.1556v6

  18. Soh, M.: Learning CNN-LSTM architectures for image caption generation. In: Stanford University, Proceeding (2016)

    Google Scholar 

  19. Szegedy, C., Toshev, A., Erhan, D.: Deep neural network for object detection. In: Proceeding of Neural Information Processing Systems (NIPS 2013)

    Google Scholar 

  20. Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating videos to natural language using deep recurrent neural networks. In: Annual Conference of the North American Chapter of the Association for Computational Linguistics (ACL) (2015). arXiv:1412.4729v3

  21. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and Tell: A Neural Image Caption Generator (2015). arXiv:1411.4555v2

  22. Wang, X., Zhu, Z., Yao, C., Bai, X.: Relaxed multiple-instance SVM with application to object discovery. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  23. Xu, K., Ba, J.L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R.S., Bengio, Y.: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (2016). arXiv:1502.03044v3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri Bhalekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhalekar, M., Sureka, S., Joshi, S., Bedekar, M. (2020). Generation of Image Captions Using VGG and ResNet CNN Models Cascaded with RNN Approach. In: Agarwal, S., Verma, S., Agrawal, D. (eds) Machine Intelligence and Signal Processing. MISP 2019. Advances in Intelligent Systems and Computing, vol 1085. Springer, Singapore. https://doi.org/10.1007/978-981-15-1366-4_3

Download citation

Publish with us

Policies and ethics