Skip to main content

Salinity Tolerance in Cotton

  • Chapter
  • First Online:
Cotton Production and Uses

Abstract

Cotton is the chief crop and main pillar of textile industry. Its fiber and seed have significant economic importance. However, salinity interferes with the normal growth functioning and results in halted growth and declined yield of fiber and seed. Salinity effects are more obvious at early growth stages of cotton, limiting final yield. Salt decreases boll formation per plant which ultimately gives decreased fiber yield and poor lint quality. Salinity is a global issue increasing every year due to uncontrolled measures and improper land management. Application of saline irrigation water is adding increments to already existing salts and deteriorating the productive soil. Arid regions are totally dependent upon rain for growth of cotton. Salt problem is more in arid regions due least availability of moisture and water for flushing salts from cotton root zone. Moreover, higher temperature favors excessive evaporation under arid conditions and leaving salt on the upper surface of soil. Salts at the surface soil impede cotton seed germination. In this chapter, we discussed formation of saline soils and their sources which deter cotton growth. Physiological changes, oxidative stress caused due to salinity, role of molecular transporters involved in detoxification and specific gene expression is also illuminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungi

APX:

Ascorbate peroxidase

CAT:

Catalase

H2O2 :

Hydrogen peroxide

IPT:

Isopentenyl transferase

1O2 :

Singlet oxygen

O2 •− :

Superoxide anions

OH:

Hydroxyl radicals

POD:

Peroxidases

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56(3):231–249

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Khan N, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1(6):715–719

    Article  Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib urRehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Article  Google Scholar 

  • Albaladejo I, Egea I, Morales B, Flores FB, Capel C, Lozano R, Bolarin MC (2018) Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis. BMC Plant Biol 18(1):213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Ahmad N, Makhdum MI, Gill KH (1986) Effect of soil salinity on cotton (Gossypium hirsutum) on early stage of growth. Pak J Sci 1:37–40

    Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cer Agron Moldova XLVII(4):71–81

    Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib urRehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Article  Google Scholar 

  • Anjum R, Ahmed A, Ullah R, Jahangir M, Yousaf M (2005) Effect of soil salinity/sodicity on the growth and yield of different varieties of cotton. Int J Agric Biol 7(4):606–608

    Google Scholar 

  • Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop Res 66:115–127

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744–752

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21(1):1–30

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Ashraf MY, Sarwar G, Ashraf M, Afaf R, Sattar A (2002) Salinity induced changes in α-amylase activity during germination and early cotton seedling growth. Biol Plantarum 45(4):589–591

    Article  CAS  Google Scholar 

  • Ashraf M, Shahzad SM, Imtiaz M, Rizwan MS, Iqbal MM (2017) Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress. Soil Environ 36(1):51–58

    Article  CAS  Google Scholar 

  • Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, Cheng H, Yang Q, Song G (2018a) Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J 16(3):699–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf MA, Iqbal M, Rasheed R, Hussain I, Perveen S, Mahmood S (2018b) Dynamic proline metabolism: importance and regulation in water-limited environments. In: Plant metabolites and regulation under environmental stress. Academic, Cambridge, MA, pp 323–336

    Chapter  Google Scholar 

  • Azarabadi S, Abdollahi H, Torabi M, Salehi Z, Nasiri J (2017) ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L.). Eur J Plant Pathol 147(2):279–294

    Article  CAS  Google Scholar 

  • Bakhsh A, Rao AQ, Shahid AA, Husnain T (2012) Spatio temporal expression pattern of an insecticidal gene (cry2A) in transgenic cotton lines. Not Sci Biol 4:115–119.

    Article  CAS  Google Scholar 

  • Bauder TA, Waskom RM, Sutherland PL, Davis JG, Follett RH, Soltanpour PN (2011) Irrigation water quality criteria. Service in Action; No. 0.506

    Google Scholar 

  • Bednarz CW, Shurley WD, Anthony WS (2002) Losses in yield, quality, and profitability of cotton from improper harvest timing. Agron J 94(5):1004–1011

    Article  Google Scholar 

  • Benz LC, Sandoval FM, Willis WO (1967) Soil salinity changes with fallow and a straw mulch on fallow. Soil Sci 104:63–68

    Article  Google Scholar 

  • Bezborodov GA, Shadmanov DK, Mirhashimov RT, Yuldashev T, Qureshi AS, Noble AD, Qadir M (2010) Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric Ecosyst Environ 138(1–2):95–102

    Article  Google Scholar 

  • Blum A (2018) Plant breeding for stress environments. CRC Press, Taylor & Francis Group, Boca Raton, FL, p 231

    Book  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132(4):2166–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress-influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Article  CAS  PubMed  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95(2):628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25

    Article  Google Scholar 

  • Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Sci 269:47–55

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Lutz A, Hill CB, Callahan DL, Roessner U (2017) A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Front Plant Sci 7:2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Carreira PM, Marques JM, Nunes D (2014) Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): natural vs. human interference. A review and reinterpretation. Appl Geochem 41:163–175

    Article  CAS  Google Scholar 

  • Carter DL, Fanning CD (1964) Combining surface mulches and periodic water applications for reclaiming saline soils. Soil Sci Soc Am J 28:564–567

    Article  Google Scholar 

  • Castellanos MT, Cabello MJ, Cartagena MC, Tarquis AM, Arce A, Ribas F (2012) Nitrogen uptake dynamics, yield and quality as influenced by nitrogen fertilization in ‘Piel de sapo’ melon. Span J Agric Res 10(3):756–767

    Article  Google Scholar 

  • Chabra R (1996) Soil salinity and water quality. CRC Press, Taylor & Francis Group, Balkema Publishers, Brookfield, VT

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 326(1–2):61–73

    Article  CAS  Google Scholar 

  • Chen W, Jin M, Ferré TPA, Liu Y, Xian Y, Shan T, Ping X (2018a) Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crop Res 215:207–221

    Article  Google Scholar 

  • Chen W, Wang Z, Jin M, Ferré TPA, Wang J, Huang J, Wang X (2018b) Effect of sodium chloride and manganese in irrigation water on cotton growth. Agron J 110:900–909

    Article  CAS  Google Scholar 

  • Cheng C, Zhang Y, Chen X, Song J, Guo Z, Li K, Zhang K (2018) Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed 38(2):19

    Article  CAS  Google Scholar 

  • Cramer GR, Lynch J, Läuchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiol 83(3):510–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa MML, Gomes Nobre R, Soares de Lima G, Raj Gheyi H, Wesley Alves Pinheiro F, Sudário Dias A, Almeida dos AnjosSoares L (2016) Saline-sodic soil and organic matter addition in the cultivation of the colored cotton ‘BRS Topázio’. Semina: Ciências Agrárias 37(2):701–704

    Google Scholar 

  • Da Silva MJ, De Souza JG, Neto MB, Da Silva JV (1992) Selection on 3 cotton cultivars for tolerance to germination under saline conditions. Pesquisa Agropec Brasileira 27:655–659

    Google Scholar 

  • Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Day JW Jr, Yanez-Arancibia A, Kemp WM, Crump BC (2013) Introduction to estuarine ecology. In: Day JW, Crump BC, Kemp WM, Yáñez-Arancibia A (eds) Estuarine ecology, 2nd edn. Wiley-Blackwell, Hoboken NJ, p 550

    Google Scholar 

  • Diacono M, Montemurro F (2015) Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture 5(2):221–230

    Article  Google Scholar 

  • Dodd K (2007) Characterising the soil and plant interactions that affect the growth and nutrition of cotton in sodic Vertosols. PhD Thesis, The University of New England, Armidale, NSW, Australia

    Google Scholar 

  • Dodd K, Guppy CN, Lockwood PV, Rochester IJ (2013) The effect of sodicity on cotton: does soil chemistry or soil physical condition have the greater role? Crop Pasture Sci 64(8):806–815

    Article  CAS  Google Scholar 

  • Dong H (2012a) Technology and field management for controlling soil salinity effects on cotton. Aus J Crop Sci 6(2):333

    CAS  Google Scholar 

  • Dong HZ (2012b) Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. China J Appl Ecol 23(2):566–572

    CAS  Google Scholar 

  • Dong H, Li W, Tang W, Li Z, Zhang D (2007) Enhanced plant growth, development and fiber yield of Bt transgenic cotton by an integration of plastic mulching and seedling transplanting. Ind Crop Prod 26:298–306

    Article  CAS  Google Scholar 

  • Dong H, Li W, Tang W, Zhang D (2008) Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agron J 100:1640–1646

    Article  Google Scholar 

  • Dong H, Li W, Tang W, Zhang D (2009) Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crop Res 111:269–275

    Article  Google Scholar 

  • Dong H, Li W, Xin C, Tang W, Zhang D (2010a) Late planting of short-season cotton in saline fields of the Yellow River Delta. Crop Sci 50:292–300

    Article  Google Scholar 

  • Dong H, Kong X, Luo Z, Li W, Xin C (2010b) Unequal salt distribution in the root zone increases growth and yield of cotton. Eur J Agron 33:285–292

    Article  CAS  Google Scholar 

  • Dong H, Kong X, Li W, Tang W, Zhang D (2010c) Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crop Res 119(1):106–113

    Article  Google Scholar 

  • Egea I, Pineda B, Ortíz-Atienza A, Plasencia FA, Drevensek S, García-Sogo B, Yuste-Lisbona FJ, Barrero-Gil J, Atarés A, Flores FB, Barneche F, Angosto T, Capel C, Salinas J, Vriezen W, Esch E, Bowler C, Bolarín MC, Moreno V, Lozano R (2018) The SlCBL10 calcineurin B-like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis. Plant Physiol 176(2):1676–1693

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943

    Article  CAS  PubMed  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt effected soils. http://www.fao.org/ag/AGL/agll/spush/intro.htm

  • FAO (2019) Management of salt affected soils. Soil Sci Soc Am J. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed 21 June 2019

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Feinerman E (1983) Crop density and irrigation with saline water. West J Agric Econ 8:134–140

    Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30(10):1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (1999) Salinisation and horticultural production. Sci Hortic 78:1–4

    Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2014) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115(3):419–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandahi AW, Kubar A, Sarki MS, Talpur N, Gandahi M (2017) Response of conjunctive use of fresh and saline water on growth and biomass of cotton genotypes. J Basic Appl Sci 13:326–334

    Article  CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Singh PK, Ma XN, Long L, Botella JR, Song CP (2018) Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biol 18(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33(4):502–511

    Article  CAS  PubMed  Google Scholar 

  • Ghafoor A, Qadir M, Murtaza G (2004) Salt-affected soils: principles of management, vol xxv. Allied Book Centre, Lahore, Pakistan. 304p

    Google Scholar 

  • Golan-Goldhirsh A, Hankamer B, Lips SH (1990) Hydroxyproline and proline content of cell walls of sunflower, peanut and cotton grown under salt stress. Plant Sci 69(1):27–32

    Article  CAS  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  CAS  PubMed  Google Scholar 

  • Gouia H, Ghorbal MH, Touraine B (1994) Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol 105(4):1409–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagin J, Sneh M, Lowengart-Aycicegi A (2002) Fertigation – fertilization through irrigation. IPI Research Topics No. 23. Ed. by Johnston AE. International Potash Institute, Basel, Switzerland

    Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331(1–2):313–327

    Article  CAS  Google Scholar 

  • Hanif M, Noor E, Murtaza N, Qayyum A, Malik W (2008) Assessment of variability for salt tolerance at seedling stage in Gossypium hirsutum L. J Food Agric Environ 6:134–138

    CAS  Google Scholar 

  • Haque SA (2006) Salinity problems and crop production in coastal regions of Bangladesh. Pak J Bot 38(5):1359–1365

    Google Scholar 

  • Harshavardhan VT, Govind G, Kalladan R, Sreenivasulu N, Hong CY (2018) Cross-protection by oxidative stress: improving tolerance to abiotic stresses including salinity. In: Kumar V, Wani SH, Suprasanna P, Tran LP (eds) Salinity responses and tolerance in plants, vol 1. Springer, Berlin, pp 283–305

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular response to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46(11):1848–1854

    Article  CAS  PubMed  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B: Biointerfaces 59(2):128–133

    Article  CAS  PubMed  Google Scholar 

  • Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci 165(4):693–699

    Article  CAS  Google Scholar 

  • Higbie SM, Wang F, Stewart JM, Sterling TM, Lindemann WC, Hughs E, Zhang J (2010) Physiological response to salt (NaCl) stress in selected cultivated Tetraploid cottons. Int J Agron 2010:1–12

    Article  CAS  Google Scholar 

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6(4):54

    Article  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  CAS  PubMed  Google Scholar 

  • Horie ST, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938

    Article  PubMed  CAS  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    PubMed  PubMed Central  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549

    Article  CAS  Google Scholar 

  • Hussain S, Khalid MF, Saqib M, Ahmad S, Zafar W, Rao MJ, Morillon R, Anjum MA (2018) Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiol Plant 40(8):135

    Article  CAS  Google Scholar 

  • Ibrahim W, Ahmed IM, Chen X, Wu F (2017) Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance, and leaf/root ultrastructure. Environ Sci Pollut Res 24(10):9417–9427

    Article  CAS  Google Scholar 

  • Ilyas M, Qureshi RH, Qadir MA (1997) Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol 10(3):247–260

    Article  Google Scholar 

  • Ishikawa T, Shabala S (2019) Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. Physiol Plant 165(3):619–631

    Article  CAS  PubMed  Google Scholar 

  • Jabeen R, Ahmad R (2009) Alleviation of the adverse effects of salt stress by foliar application of sodium antagonistic essential minerals of cotton (Gossypium hirsutum L.). Pak J Bot 41(5):2199–2208

    CAS  Google Scholar 

  • Jafri AZ, Rafiq A (1994) Plant growth and ionic distribution in cotton (Gossypium hirsutum L.) under saline environment. Pak J Bot 26:105

    Google Scholar 

  • Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthusroseus. Turk J Biol 32(2):79–83

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Jubany-Marí T, Munné-Bosch S, López-Carbonell M, Alegre L (2009) Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. J Exp Bot 60:107–120

    Article  CAS  PubMed  Google Scholar 

  • Kahlown MA, Azam M (2002) Individual and combined effect of waterlogging and salinity on crop yields in the Indus basin. Irrig Drain 51(4):329–338

    Article  Google Scholar 

  • Kang Y, Wang R, Wan S, Hu W, Jiang S, Liu S (2012) Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China. Agric Water Manage 109:117–126

    Article  Google Scholar 

  • Karlberg L, de Vries FWTP (2004) Exploring potentials and constraints of low-cost drip irrigation with saline water in sub-Saharan Africa. Phys Chem Earth 29:1035–1042

    Article  Google Scholar 

  • Kawakami EM, Oosterhuis DM, Snider JL (2010) Effect of salinity on cotton nitrogen uptake and assimilation of urea applied with N-(n-Butyl) thiophosphorctriamide and dicyandiaminde. Summaries Arkansas Cotton Research. AAES Res Ser 589:40–45

    Google Scholar 

  • Khan TM, Saeed M, Mukhtar MS, Khan AM (2001) Assesment of variation for salinity tolerance in some hybrids of cotton (Gossypium hirsutum L.). Int J Agric Biol 3:167–170

    Google Scholar 

  • Khare T, Kumar V, Kishor PB (2015) Na+ and Cl ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252(4):1149–1165

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50(338):1495–1505

    Article  CAS  Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60(3):344–351

    Article  CAS  Google Scholar 

  • Kong X, Luo Z, Dong H, Eneji AE, Li W (2011) Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J Exp Bot 63(5):2105–2116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kothari N, Campbell BT, Dever JK, Hinze LL (2016) Combining ability and performance of cotton germplasm with diverse seed oil content. Crop Sci 56(1):19–29

    Article  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter CA (1987) Heritability of salt tolerance during germination and emergence in short staple cotton. Diss Abstr Int Sci Eng 47(11):113

    Google Scholar 

  • Leidi EO, Saiz JF (1997) Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings? Plant Soil 190(1):67–75

    Article  CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291

    Article  CAS  PubMed  Google Scholar 

  • Liu MX, Yang JS, Li XM, YU M, Wang J (2012a) Effects of irrigation water quality and drip tape arrangement on soil salinity, soil moisture distribution, and cotton yield (Gossypium hirsutum L.) under mulched drip irrigation in Xinjiang, China. J Integr Agric 11(3):502–511

    Article  Google Scholar 

  • Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012b) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plantarum 56(2):237–246

    Article  CAS  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X, Zhang J (2014a) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014b) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and anti-oxidative metabolism of cotton seedlings. Plant Growth Regul 73(1):67–78

    Article  CAS  Google Scholar 

  • Liu JF, Zhang SL, Tang HL, Wu LZ, Dong LJ, Liu LD, Che WL (2015) Overexpression of an Aeluropuslittoralis Parl. potassium transporter gene, AlHAK1, in cotton enhances potassium uptake and salt tolerance. Euphytica 203(1):197–209

    Article  CAS  Google Scholar 

  • Lobell DB, Ortiz-Monasterio JI, Gurrola FC, Valenzuela L (2007) Identification of saline soils with multiyear remote sensing of crop yields. Soil Sci Soc Am J 71(3):777–783

    Article  CAS  Google Scholar 

  • Lu H, Lashari MS, Liu X, Ji H, Li L, Zheng J, Kibue GW, Joseph S, Pan G (2015) Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. Eur J Soil Biol 70:67–76

    Article  CAS  Google Scholar 

  • Lu Z, Lu J, Pan Y, Lu P, Li X, Cong R, Ren T (2016) Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant Cell Environ 39(11):2428–2439

    Article  CAS  PubMed  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–26

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irr Drain Div 103:115–134

    Google Scholar 

  • Martinez-Beltran J, LiconaManzur C (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: International salinity forum managing saline soils and water: science, technology and social issues, Riverside Convention Center, Riverside, California, USA, 25–28 April 2005, pp 311–314

    Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr 24(3):599–612

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76

    Article  CAS  Google Scholar 

  • Metternicht GI, Zink JA (2003) Remote sensing of soil salinity: potential and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Min W, Guo H, Zhou G, Zhang W, Ma L, Ye J, Hou Z, Wu L (2016) Soil salinity, leaching, and cotton growth as affected by saline water drip irrigation and N fertigation. Acta Agric Scand B Soil Plant Sci 66(6):489–501

    CAS  Google Scholar 

  • Min W, Guo H, Hu Z, Zhang H, Ye J, Hou Z (2017) Cotton growth and the fate of N fertilizer as affected by saline water irrigation and N fertigation in a drip-irrigated field. Acta Agric Scand B Soil Plant Sci 67(8):712–722

    CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Moseley WG (2001) Sahelian ‘white gold’ and rural poverty-environment interactions: the political ecology of cotton production, environmental change, and household food economy in Mali. Doctoral dissertation, University of Georgia

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Murtaza G, Ghafoor A, Qadir M (2006) Irrigation and soil management strategies for using saline-sodic water in a cotton–wheat rotation. Agric Water Manage 81(1–2):98–114

    Article  Google Scholar 

  • Murtaza G, Murtaza B, Usman HM, Ghafoor A (2013) Amelioration of saline-sodic soil using gypsum and low quality water in following sorghum-berseem crop rotation. Int J Agric Biol 15(4):640–648

    CAS  Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note. United Nations Environment Programme - I11. Global Assessment of Soil Degradation GLASOD, October 1990. International Soil Reference and Information Centre, Nairobi

    Google Scholar 

  • Ondrasek O, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. InTech, Croatia. https://doi.org/10.5772/22248

    Book  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Paytn P (2011) Expression of an Arabidopsis vacuolar H+ pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Pasternak D, De Malach Y (1994) Crop irrigation with saline water. Handbook of plant and crop stress. Marcel Dekker, New York, pp 599–622

    Google Scholar 

  • Peng Z, He S, Sun J, Pan Z, Gong WF, Lu Y, Du X (2016) Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci Rep 6:34548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99(12):8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253–254:94–113

    Article  Google Scholar 

  • Rathert G (1982) Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. VI. Mineral distribution variability among different salt-tolerant cotton varieties. J Plant Nutr 5:183–193

    Article  CAS  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AL, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27(6):753–763

    Article  PubMed  Google Scholar 

  • Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411(1–2):319–332

    Article  CAS  PubMed  Google Scholar 

  • Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Funct Plant Biol 27(7):709–715

    Article  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37(7):613–620

    Article  Google Scholar 

  • Rochester IJ (2010) Phosphorus and potassium nutrition of cotton: interaction with sodium. Crop Pasture Sci 61:825–834

    Article  CAS  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322(5907):1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Anapali O, Hanay A (2002) The effect of consecutive applications of leaching water applied in equal, increasing or decreasing quantities on soil hydraulic conductivity of a saline–sodic soil in the laboratory. Soil Use Manage 18:152–154

    Article  Google Scholar 

  • Sandoval FM, Benz LC (1966) Effect of bare fallow, barley and grass on salinity of a soil over a saline water table. Soil Sci Soc Am J 30:392–397

    Article  Google Scholar 

  • Sarangi SK, Maji B, Mandal UK, Mahanta KK, Mandal S, Sharma PC (2017) Raised bed sowing – a climate change adaptive maize cultivation practice for coastal saline region. Paper presented orally at 5th National Seminar of Indian Society of Soil Salinity and Water Quality (ISSSWQ), Swami Keshwanand Rajasthan Agricultural University, Bikaner, 21–23 January 2017, pp 71–72

    Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):77–80

    CAS  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shahzad S, Khan MY, Zahir ZA, Asghar HN, Chaudhry UK (2017) Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pak J Bot 49(4):1523–1530

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shen G, Wei J, Qiu X, Hu R, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33(2):167–177

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Soares LA, Fernandes PD, de Lima GS, Suassuna JF, Brito MEB, da Sá FV (2018) Growth and fiber quality of colored cotton under salinity management strategies. Rev Bras Eng Agríc Ambient 22(5):332–337

    Article  Google Scholar 

  • Song J, Zhang R, Yue D, Chen X, Guo Z, Cheng C, Hu M, Zhang J, Zhang K (2018) Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields. Plant Sci 274:369–382

    Article  CAS  PubMed  Google Scholar 

  • Sumner ME (ed) (1999) Handbook of soil science. CRC Press, Boca Raton, FL

    Google Scholar 

  • Sun X, Liu Y (2001) Test on criteria of evaluating salt tolerance of cotton cultivars. Zuo Wu Xue Bao 27(6):794–801

    Google Scholar 

  • Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K (1999) Effect of continuous compost application on water-stable soil macroaggregation in a field subjected to double cropping. Soil Sci Plant Nutr 45:1003–1007

    Article  Google Scholar 

  • Szabolcs I (1989) Salt-affected soils. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tang W, Luo Z, Wen SM, Dong HZ, Xin CS, Li WJ (2007) Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress. Cotton Sci 19:28–32

    Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43

    Article  Google Scholar 

  • Thomas DSG (ed) (2011) Arid zone geomorphology: process, form and change in drylands. Wiley, Hoboken, NJ, p 648

    Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391

    Google Scholar 

  • Van Breemen N, Buurman P (2002) Soil formation. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Villa-Castorena M, Ulery AL, Catalán-Valencia EA, Remmenga MD (2003) Salinity and nitrogen rate effects on the growth and yield of Chile pepper plants. Soil Sci Soc Am J 67(6):1781–1789

    Article  CAS  Google Scholar 

  • Wang R, Kang Y, Wan S, Hu W, Liu S, Jiang S, Liu S (2012) Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area. Agric Water Manage 110:109–117

    Article  Google Scholar 

  • Wang R, Kang Y, Wan S (2015) Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China. Agric Water Manage 153:1–8

    Article  Google Scholar 

  • Wang N, Qi H, Qiao W, Shi J, Xu Q, Zhou H, Yan G, Huang Q (2017) Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance. Acta Physiol Plant 39(3):77

    Article  CAS  Google Scholar 

  • Warrence NJ, Bauder JW, Pearson KE (2002) Basics of salinity and sodicity effects on soil physical properties. Bozeman, MT, Department of Land Resources and Environmental Sciences, Montana State University, pp 1–29

    Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, Zhou Z, Wang Y, Zhang Z, Lin Z, Liu F, Wang K (2017) Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One 12(5):e0178313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25(2):195–210

    Article  CAS  PubMed  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32(2):297–304

    Article  CAS  Google Scholar 

  • Wu H, Zhang X, Giraldo JP, Shabala S (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431(1–2):1–17

    Article  CAS  Google Scholar 

  • Xie Z, Duan L, Tian X, Wang B, Eneji AE, Li Z (2008) Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. J Plant Physiol 165(4):375–384

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Liu X, Sun T (2011) The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecol Model 222(2):241–252

    Article  CAS  Google Scholar 

  • Xu WL, Zhang DJ, Wu YF, Qin LX, Huang GQ, Li J, Li L, Li XB (2013) Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol 82(4–5):353–365

    Article  CAS  PubMed  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Younis A, Riaz A, Ahmed I, Siddique MI, Tariq U, Hameed M, Nadeem M (2014) Anatomical changes induced by NaCl stress in root and stem of Gazania harlequin L. Agric Commun 2:8–14

    Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2016) Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14(1):72–84

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G (2018) Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnol J 16(1):310–321

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Dong H, Shi YJ, Chen SY, Zhu YH (2007) Transformation of cotton (Gossypium hirsutum) with AhCMO gene and the expression of salinity tolerance. Acta Agron Sin 33:1073–1078

    CAS  Google Scholar 

  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23(2):289–298

    Article  CAS  Google Scholar 

  • Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011a) Creating drought-and salt tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6(6):861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhen J, Li Z, Kang D, Yang Y, Kong J, Hua J (2011b) Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29(3):626–637

    Article  CAS  Google Scholar 

  • Zhang D, Li W, Xin C, Tang W, Eneji AE, Dong H (2012a) Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crop Res 138:63–70

    Article  Google Scholar 

  • Zhang HJ, Dong HZ, Li WJ, Zhang DM (2012b) Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. J Agron Crop Sci 198(1):27–37

    Article  CAS  Google Scholar 

  • Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9(11):e112807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Wang T, Liu KS, Wang L, Wang K, Zhou Y (2015) Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agric Water Manage 159:115–122

    Article  CAS  Google Scholar 

  • Zhang K, Song J, Chen X, Yin T, Liu C, Li K, Zhang J (2016) Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica 211(2):231–244

    Article  CAS  Google Scholar 

  • Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217(3):1161–1176

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and water logging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8(11):e80218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niaz Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, N., Chaudhry, U.K., Ali, M.A., Ahmad, F., Sarfraz, M., Hussain, S. (2020). Salinity Tolerance in Cotton. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_19

Download citation

Publish with us

Policies and ethics