Skip to main content

Automatic Calibration for Residential Water Meters by Using Artificial Vision

  • Conference paper
  • First Online:
Intelligent Manufacturing and Energy Sustainability

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 169))

  • 1385 Accesses

Abstract

The present work addresses the problem of automated calibration system for residential water meters, by using artificial vision. The project consists of a closed water flow circuit powered by a low-power pump; the data from water meter is taken by the computer using a USB camera; a calculation is made based on the time it takes to fully rotate the smaller-scale needle of the meter to determine the water flow in real time. At the same time, the actual flow data of the reference standard element, which is a rotameter, is obtained by a second camera. These values are compared to calculate an error that determines the adjustment action on the water meter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cubero, S., Aleixos, N., Molto, E., Gomez-Sanchis, J., Blasco, J.: Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproc. Techol. 4(4), 487–504 (2011)

    Article  Google Scholar 

  2. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33(1–2), 21–39 (2012)

    Article  Google Scholar 

  3. Fernandes, R.A.B., Diniz, B., Ribeiro, R., Humayun, M.: Artificial vision through neuronal stimulation. Neurosci. Lett. 519, 122–128 (2012)

    Article  Google Scholar 

  4. Jiale, H., En, L., Bingjie, T., Ming, L.: Reading recognition method of analog measuring instruments based on improved hough transform. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments, Chengdu, 337–340 2011

    Google Scholar 

  5. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft Kinect sensor: a review. In: IEEE Transactions on Cybernetics, vol. 43, no. 5, 1318–1334 Oct 2013

    Google Scholar 

  6. Luhmann, T., Robson, K., Kyle, S., Boehm J.: Close-range photogrammetry and 3D imgaging. Walter de Gruyter Gmbll Berlin (2014)

    Google Scholar 

  7. Cominola, A., Giuliani, M., Piga, D., Castelletti, A., Rizzoli, A.E.: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: a review. Environ. Model. Softw. 72, 198–214, (2015) ISSN 1364-8152

    Google Scholar 

  8. Sonderlund, A.L., Smith, J.R., Hutton, C., Kapelan, Z.: Using smart meters for household water consumption feedback: knowns and unknowns. Procedia Eng. 89, 990–997 (2014)

    Article  Google Scholar 

  9. Larson, E., Froehlich, J., Campbell, T., Haggerty, C., Atlas, L., Fogarty, J., Patel, S.N.: Disaggregated water sensing from a single, pressure-based sensor: an extended analysis of HydroSense using staged experiments. Pervasive Mob. Comput. 8(1), 82–102 (2012)

    Article  Google Scholar 

  10. Lim, T.Y., Ratnam, M.M.: Edge detection and measurement of nose radii of cutting tool inserts from scanned 2-D images. Opt. Lasers Eng. 50(11), 1628–1642 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pruna, E., Bustamante, C., Escudero, M., Mullo, S., Escobar, I., Bucheli, J. (2020). Automatic Calibration for Residential Water Meters by Using Artificial Vision. In: Reddy, A., Marla, D., Simic, M., Favorskaya, M., Satapathy, S. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, vol 169. Springer, Singapore. https://doi.org/10.1007/978-981-15-1616-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1616-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1615-3

  • Online ISBN: 978-981-15-1616-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics