Skip to main content

A Tutorial and Survey on Fault Knowledge Graph

  • Conference paper
  • First Online:
Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health (CyberDI 2019, CyberLife 2019)

Abstract

Knowledge Graph (KG) is a graph-based data structure that can display the relationship between a large number of semi-structured and unstructured data, and can efficiently and intelligently search for information that users need. KG has been widely used for many fields including finance, medical care, biological, education, journalism, smart search and other industries. With the increase in the application of Knowledge Graphs (KGs) in the field of failure, such as mechanical engineering, trains, power grids, equipment failures, etc. However, the summary of the system of fault KGs is relatively small. Therefore, this article provides a comprehensive tutorial and survey about the recent advances toward the construction of fault KG. Specifically, it will provide an overview of the fault KG and summarize the key techniques for building a KG to guide the construction of the KG in the fault domain. What’s more, it introduces some of the open source tools that can be used to build a KG process, enabling researchers and practitioners to quickly get started in this field. In addition, the article discusses the application of fault KG and the difficulties and challenges in constructing fault KG. Finally, the article looks forward to the future development of KG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, X., Ren, X., Mengshoel, O.J., et al.: Stochastic optimization for market return prediction using financial knowledge graph. In: 2018 IEEE International Conference on Big Knowledge (ICBK). IEEE Computer Society (2018)

    Google Scholar 

  2. Liu, Y., Zeng, Q., Yang, H., Carrio, A.: Stock price movement prediction from financial news with deep learning and knowledge graph embedding. In: Yoshida, K., Lee, M. (eds.) PKAW 2018. LNCS (LNAI), vol. 11016, pp. 102–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97289-3_8

    Chapter  Google Scholar 

  3. Shen, Y., Yuan, K., Dai, J., et al.: KGDDS: a System for Drug-Drug Similarity Measure in therapeutic substitution based on knowledge graph curation. J. Med. Syst. 43(4), 43 (2019)

    Article  Google Scholar 

  4. Shengtian, S., Zhihao, Y., Lei, W., et al.: SemaTyP: a knowledge graph based literature mining method for drug discovery. BMC Bioinform. 19(1), 193 (2018)

    Article  Google Scholar 

  5. Sang, S., Yang, Z., Liu, X., et al.: GrEDeL: a knowledge graph embedding based method for drug discovery from biomedical literature. IEEE Access 7, 8404–8415 (2018)

    Article  Google Scholar 

  6. Ali, M., Hoyt, C.T., Domingo-Fernandez, D., et al.: BioKEEN: a library for learning and evaluating biological knowledge graph embeddings. BioRxiv, 475202 (2018)

    Google Scholar 

  7. Alshahrani, M., Khan, M.A., Maddouri, O., et al.: Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33(17), 2723–2730 (2017)

    Article  Google Scholar 

  8. Xiaoxue, L., Xuesong, B., Longhe, W., et al.: Review and trend analysis of knowledge graphs for crop pest and diseases. IEEE Access 7, 62251–62264 (2019)

    Article  Google Scholar 

  9. Chenglin, Q., Qing, S., Pengzhou, Z., et al.: Cn-makg: China meteorology and agriculture knowledge graph construction based on semi-structured data. In: Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), F, 2018. IEEE (2018)

    Google Scholar 

  10. Sawant, U., Garg, S., Chakrabarti, S., et al.: Neural architecture for question answering using a knowledge graph and web corpus. Inf. Retrieval J. 22(3–4), 324–349 (2019)

    Article  Google Scholar 

  11. Shin, S., Jin, X., Jung, J., et al.: Predicate constraints based question answering over knowledge graph. Inf. Process. Manage. 56(3), 445–462 (2019)

    Article  Google Scholar 

  12. Zheng, W., Cheng, H., Yu, J.X., et al.: Interactive natural language question answering over knowledge graphs. Inf. Sci. 481, 141–159 (2019)

    Article  MathSciNet  Google Scholar 

  13. Lu, Y.-C., Wen, Y.-J., Xuan, L., et al.: Exploration of the construction and application of knowledge graph in equipment failure. DEStech Transactions on Computer Science and Engineering, (smce) (2017)

    Google Scholar 

  14. Qin, Z., Cen, C., Jie, W., et al.: Knowledge-graph based multi-target deep-learning models for train anomaly detection. In: Proceedings of the 2018 International Conference on Intelligent Rail Transportation (ICIRT). IEEE (2018)

    Google Scholar 

  15. Shan, X., Zhu, B., Wang, B., et al.: Research on deep learning based dispatching fault disposal robot technology. In: Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE (2018)

    Google Scholar 

  16. Tang, Y., Liu, T., Liu, G., et al.: Enhancement of power equipment management using knowledge graph. arXiv preprint arXiv:190412242 (2019)

  17. Steiner, T., Verborgh, R., Troncy, R., et al.: Adding realtime coverage to the google knowledge graph. In: Proceedings of the 11th International Semantic Web Conference (ISWC 2012). Citeseer (2012)

    Google Scholar 

  18. Zheng, M., Ma, Y., Zheng, A., et al.: Constructing method of public opinion knowledge graph with online news comments. In: Proceedings of the 2018 International Conference on Robots & Intelligent System (ICRIS). IEEE (2018)

    Google Scholar 

  19. Choudhury, S., Agarwal, K., Purohit, S., et al.: Nous: construction and querying of dynamic knowledge graphs. In: Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE (2017)

    Google Scholar 

  20. Zheng, M., Ma, Y., Zheng, A., et al.: Constructing method of public opinion knowledge graph with online news comments. In: Proceedings of the 2018 International Conference on Robots & Intelligent System (ICRIS). IEEE (2018)

    Google Scholar 

  21. Heydon, A., Najork, M.: Mercator: a scalable, extensible web crawler. World Wide Web 2(4), 219–229 (1999)

    Article  Google Scholar 

  22. De Groc, C.: Babouk: focused web crawling for corpus compilation and automatic terminology extraction. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. IEEE (2011)

    Google Scholar 

  23. Xia, J., Wan, W., Liu, R., et al.: Distributed web crawling: a framework for crawling of micro-blog data (2015)

    Google Scholar 

  24. Cowie, J., Wilks, Y.: Information extraction. Handbook Nat. Lang. Process. 56, 57 (2000)

    Google Scholar 

  25. Lian, H., Qin, Z., He, T., et al.: Knowledge graph construction based on judicial data with social media. In: Proceedings of the 2017 14th Web Information Systems and Applications Conference (WISA). IEEE (2017)

    Google Scholar 

  26. Wang, X., Ma, C., Liu, P., et al.: A potential solution for intelligent energy management-knowledge graph. In: Proceedings of the 2018 IEEE International Conference on Energy Internet (ICEI). IEEE (2018)

    Google Scholar 

  27. Li, Y., Wang, C., Han, F., et al. Mining evidences for named entity disambiguation. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2013)

    Google Scholar 

  28. Urata, T., Maeda, A.: An entity disambiguation approach based on wikipedia for entity linking in microblogs. In: Proceedings of the 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE (2017)

    Google Scholar 

  29. Wang, X., Ma, C., Liu, P., et al.: A potential solution for intelligent energy management-knowledge graph. In: Proceedings of the 2018 IEEE International Conference on Energy Internet (ICEI). IEEE (2018)

    Google Scholar 

  30. Song, Q., Liu, J., Wang, X., et al.: A novel automatic ontology construction method based on web data. In: Proceedings of the 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE (2014)

    Google Scholar 

  31. Navarro, L.F., Hruschka, E.R., Appel, A.P.: Finding inference rules using graph mining in ontological knowledge bases. In: Proceedings of the 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE (2016)

    Google Scholar 

  32. Appel, A.P., Junior, E.R.H.: Prophet–a link-predictor to learn new rules on NELL. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE (2011)

    Google Scholar 

  33. Navarro, L.F., Appel, A.P., Junior, E.R.H.: GraphDB – storing large graphs on secondary memory. In: Catania, B., et al. (eds.) New Trends in Databases and Information Systems. AISC, vol. 241, pp. 177–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01863-8_20

    Chapter  Google Scholar 

  34. Tsai, S.-F., Tang, H., Tang, F., et al.: Ontological inference framework with joint ontology construction and learning for image understanding. In: Proceedings of the 2012 IEEE International Conference on Multimedia and Expo. IEEE (2012)

    Google Scholar 

  35. Collins, M., Singer, Y.: Unsupervised models for named entity classification. In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 100–110 (1999)

    Google Scholar 

  36. Cucerzan, S., Yarowsky, D.: Language independent named entity recognition combining morphological and contextual evidence. In: Proceedings of the 1999 Joint SIGDAT Conference on EMNLP and VLC, pp. 90–99 (1999)

    Google Scholar 

  37. Isozaki, H., Kazawa, H.:[ Association for Computational Linguistics the 19th international conference - Taipei, Taiwan (2002.08.24–2002.09.01)] Proceedings of the 19th international conference on Computational linguistics, - - Efficient support vector classifiers for named entity recognition[In: Proceedings of the 19th International Conference on Computational Linguistics, vol. 1, pp. 1–7 (2002)

    Google Scholar 

  38. Borthwick, A.E.: A Maximum Entropy Approach to Named Entity Recognition. New York University, New York (1999)

    Google Scholar 

  39. Bikel, D.M., Miller, S., Schwartz, R., et al.: Nymble: a High-Performance Learning Name-finder. Anlp 94–201 (1998)

    Google Scholar 

  40. Bikel, D.M.: An algorithm that learns what’s in a name. Machine Learning 34 (1999)

    Article  Google Scholar 

  41. Mccallum, A., Li, W.: [Association for Computational Linguistics the seventh conference - Edmonton, Canada (2003.05.31-.)] Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, - - Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons, vol. 4, pp. 188–191 (2003)

    Google Scholar 

  42. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Proceedings of the Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  43. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  44. Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  45. Ji, G., He, S., Xu, L., et al.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (2015)

    Google Scholar 

  46. Xiao, H., Huang, M., Hao, Y., et al.: TransA: An adaptive approach for knowledge graph embedding. arXiv preprint arXiv:150905490 (2015)

  47. Ji, G., Liu, K., He S., et al.: Knowledge graph completion with adaptive sparse transfer matrix. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  48. He, S., Liu, K., Ji, G., et al.: Learning to represent knowledge graphs with gaussian embedding. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM (2015)

    Google Scholar 

  49. Xiao, H., Huang, M., Hao, Y., et al.: TransG: a generative mixture model for knowledge graph embedding. arXiv preprint arXiv:150905488 (2015)

  50. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Citeseer (2010)

    Google Scholar 

  51. Manning, C., Surdeanu, M., Bauer, J., et al.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations (2014)

    Google Scholar 

  52. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media Inc., Beijing (2009)

    MATH  Google Scholar 

  53. Qiu, X., Zhang, Q., Huang, X.: Fudannlp: a toolkit for chinese natural language processing. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations (2013)

    Google Scholar 

  54. Zhang, C.: DeepDive: A Data Management System for Automatic Knowledge Base Construction. University of Wisconsin-Madison, Madison (2015)

    Google Scholar 

  55. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for information extraction. In: Proceedings of the 18th International Conference on World wide web. ACM (2009)

    Google Scholar 

  56. Baldridge, J., Chatterjee, S., Palmer, A., et al.: DotCCG and VisCCG: Wiki and programming paradigms for improved grammar engineering with OpenCCG; proceedings of the CSLI Studies in Computational Linguistics Online. Citeseer (2007)

    Google Scholar 

  57. Miller, E.: An Introduction to the Resource Description Framework. Bull. Am. Soc. Inf. Sci. Technol. 25(1), 15–19 (1998)

    Article  MathSciNet  Google Scholar 

  58. Bechhofer, S.: OWL: web ontology language. Encyclopedia Inf. Sci. Technol. Second Ed. 63(45), 990–996 (2004)

    Google Scholar 

  59. Partner, J., Vukotic, A., Watt, N.: Neo4j in Action. Pearson Schweiz Ag (2014)

    Google Scholar 

  60. Chinchor, N., Marsh, E.: Muc-7 information extraction task definition. In: Proceeding of the Seventh Message Understanding Conference (MUC-7), Appendices (1998)

    Google Scholar 

  61. Vilain, M., Burger, J., Aberdeen, J.: Proceedings of the 6th Conference on Message Understanding (MUC-6) (1995)

    Google Scholar 

  62. Brants, T.: Proceedings of the Sixth Conference on Applied Natural Language Processing (2000)

    Google Scholar 

  63. Kambhatla, N.: Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions (2004)

    Google Scholar 

  64. Gonzalez, E., Turmo, J.: Unsupervised relation extraction by massive clustering. In: Proceedings of the 2009 Ninth IEEE International Conference on Data Mining. IEEE (2009)

    Google Scholar 

  65. Liu, X., Yu, N.: Multi-type web relation extraction based on bootstrapping. In: proceedings of the 2010 WASE International Conference on Information Engineering. IEEE (2010)

    Google Scholar 

  66. Hendrickx, I., Kim, S.N., Kozareva, Z., et al.: Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions. Association for Computational Linguistics (2009)

    Google Scholar 

  67. Socher, R., Huval, B., Manning, C.D., et al.: Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics (2012)

    Google Scholar 

  68. Zeng, D., Liu, K., Lai, S., et al.: Relation classification via convolutional deep neural network (2014)

    Google Scholar 

  69. Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional neural networks. In: Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing (2015)

    Google Scholar 

  70. Lin, Y., Shen, S., Liu, Z., et al.: Neural relation extraction with selective attention over instances. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (2016)

    Google Scholar 

  71. Zheng, S., Hao, Y., Lu, D., et al.: Joint entity and relation extraction based on a hybrid neural network. Neurocomputing 257, 59–66 (2017)

    Article  Google Scholar 

  72. Li, Q., Ji, H.: Incremental joint extraction of entity mentions and relations. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers (2014)

    Google Scholar 

  73. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: proceedings of the Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  74. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: Proceedings of International Conference on Neural Networks (ICNN 1996). IEEE (1996)

    Google Scholar 

  75. Wang, C., Gao, M., He, X., et al.: Challenges in chinese knowledge graph construction. In: Proceedings of the 2015 31st IEEE International Conference on Data Engineering Workshops. IEEE (2015)

    Google Scholar 

  76. Duan, Y., Shao, L., Hu, G., et al.: Specifying architecture of knowledge graph with data graph, information graph, knowledge graph and wisdom graph. In: Proceedings of the 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA). IEEE (2017)

    Google Scholar 

  77. Neil, D., Briody, J., Lacoste, A., et al.: Interpretable graph convolutional neural networks for inference on noisy knowledge graphs. arXiv preprint arXiv:181200279 (2018)

  78. He, Z., Chen, W., Li, Z., et al.: SEE: syntax-aware entity embedding for neural relation extraction. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  79. Guo, X., Zhang, H., Yang, H., et al.: A single attention-based combination of CNN and RNN for relation classification. IEEE Access 7, 12467–12475 (2019)

    Article  Google Scholar 

  80. Nie, B., Sun, S.: Knowledge graph embedding via reasoning over entities, relations, and text. Future Gener. Comput. Syst. 91, 426–433 (2019)

    Article  Google Scholar 

  81. Yan, D., Hu, B.: Shared representation generator for relation extraction with Piecewise-LSTM convolutional neural networks. IEEE Access 7, 31672–31680 (2019)

    Article  Google Scholar 

  82. Zhang, C., Cui, C., Gao, S., et al.: Multi-gram CNN-based self-attention model for relation classification. IEEE Access 7, 5343–5357 (2019)

    Article  Google Scholar 

  83. Guo, X., Zhang, H., Yang, H., et al.: A single attention-based combination of CNN and RNN for relation classification. IEEE Access 7, 12467–12475 (2019)

    Article  Google Scholar 

  84. Shen, Y., Sun, J, Jia, P., et al.: Entity-dependent long-short time memory network for semantic relation extraction. In: Proceedings of the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS). IEEE (2019)

    Google Scholar 

  85. Le, H.Q., Nguyen, T.M., Vu, S.T., et al.: D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Bioinformatics (2018)

    Google Scholar 

  86. Chen, H., Lin, Z., Ding, G., et al.: GRN: gated relation network to enhance convolutional neural network for named entity recognition (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShunKun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Yang, S. (2019). A Tutorial and Survey on Fault Knowledge Graph. In: Ning, H. (eds) Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health. CyberDI CyberLife 2019 2019. Communications in Computer and Information Science, vol 1138. Springer, Singapore. https://doi.org/10.1007/978-981-15-1925-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1925-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1924-6

  • Online ISBN: 978-981-15-1925-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics