Skip to main content

Abstracts

Almost 35% of the Earth’s land surface is covered by desert ecosystems. Areas that suffer from water scarcity are expected to increase owing to global climate changes. Water deficiency has become a worldwide threat due to its lethal effect on plant growth, development, and reproduction which foreshadows a food problem and enormous economic losses. Xerophytes, drought-tolerant plants, are able to grow and live under these harsh conditions. Although xerophytic plants are not closely related taxa, they all have similar forms, structures and shape to survive in such a xeric habitat. Xerophytes and their different mechanisms of adaptation to arid region have become of an international focus nowadays. This chapter discusses frontier knowledge about morphological, anatomical, and physiological adaptations and strategies of survival enabling xerophytes to develop and complete their life cycles in arid and semiarid regions. In addition, a special interest is given to the transcriptomic analysis of xerophytes to reveal the molecular basis for their drought tolerance. Finally, we provide an overview on the importance of xerophytes as a treasure of genetic resources for genetic enhancement of stress resistance of important forage and crop species in areas of arid climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aba Alkhail MS, Moftah AE (2011) Adaptation mechanisms of some desert plants grown in central region of Saudi Arabia. Inter Res J Agric Sci Soil Sci 1:462–470

    Google Scholar 

  • Akashi K, Yoshida K, Kuwano M, Kajikawa M et al (2011) Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta 233:947–960

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, McKee IF, Farage PK, Baker NR (1997) Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell Environ 20:633–640

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Res 5:F1000 Faculty Rev-1554. https://doi.org/10.12688/f1000research.7678.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieleski RL (1982) Sugar alcohols. In: Loewusand FA, Tanner W (eds) Plant carbohydrates I encyclopedia of plant physiology, new series, vol 13A. Springer, Berlin, pp 158–192

    Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10. https://doi.org/10.1111/pce.12800

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Boscaiu M, Mora E, Fola O, Scridon S, LLinares J, Vicente O (2009) Osmolyte accumulation in xerophytes as a response to environmental stress. Bull UASVM Hort 66(1):96–102

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chen TTH, Murata N (2011) Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Cromwell BT, Rennie SD (1953) The biosynthesis and metabolism of betaines in plants. The estimation and distribution of glycinebetaine (betaine) in Beta vulgaris L. and other plants. Biochem J 55:189–192

    Article  CAS  PubMed Central  Google Scholar 

  • Cui L, Chai Y, Li J, Liu H, Zhang L, Xue L (2010) Identification of a glucose-6-phosphate isomerase involved in adaptation to salt stress of Dunaliella salina. J Appl Phycol 22:563–568

    Article  CAS  Google Scholar 

  • Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial Delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–356

    Article  CAS  PubMed  Google Scholar 

  • During HJ (1979) Life strategies of bryophytes: a preliminary review. Lindbergia 5:2–18

    Google Scholar 

  • Esen AH, Ă–zgĂ¼r R, Uzilday B, Tanyolac Ă–, Dinc A (2012) The response of the xerophytic plant Gypsophila aucheri to salt and drought stresses: the role of the antioxidant defence system. Turk J Bot 36:697–706

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Farghali KA, El-Aidarous AA (2014) Thermostability of chlorophylls in some native species of xerophytes. IOSR J Agr Vet Sci 6:52–65

    Article  Google Scholar 

  • Feller U (2006) Stomatal opening at elevated temperature: an underestimated regulatory mechanism. General Appl Plant Physiol Special Issue:19–31. https://doi.org/10.7892/boris.53995

  • Filella I, Serrano L, Serra J, Peñuelas J (1995) Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci 35(5):1400–1405

    Article  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Gaff DF (1981) The biology of resurrection plants. In: Pate S, McComb AJ (eds) The biology of australian plants. University of Western Australia Press, Nedland, pp 114–116

    Google Scholar 

  • Gil R, Lull C, Boscaiu M, Bautista I, LidĂ³n A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobot Cluj Napoca 39:9–17

    Article  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms. Protoplasma 250:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hamilton EW 3rd, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466. https://doi.org/10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    Article  PubMed  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 11:2991–3007

    Article  CAS  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordaan A, Kruger H (1998) Notes on the cuticular ultrastructure of six xerophytes from Southern Africa. S Afr J Bot 64(1):82–85

    Article  Google Scholar 

  • Jouve L, Hoffmann L, Hausman JF (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of Aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol 6:74–80

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 41:864–873

    Article  CAS  PubMed  Google Scholar 

  • Khidr ZA, Ebad FA, El-Khawaga HA (2017) Osmoregulation and antimicrobial activity of two Egyptian true xerophytes; Launaea spinosa (Forssk.) and Leptadenia pyrotechinica (Forssk.). Egypt J Desert Res 67(2):327–345

    Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus L. Environ Exp Bot 56:136–146

    Article  CAS  Google Scholar 

  • Kurek I, Change TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate stress. Plant Cell 19:3230–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larcher W (1983) Physiological plant ecology. Trans. by Biederman-Thorson MA. Springer, Berlin, 303pp

    Google Scholar 

  • Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys 386:261–267

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Davey PA, Yates SA, Bechtold Y, Baeshen M, Baeshen N, Mutwakil MZ, Sabir J, Baker NR, Mullineaux PM (2014) C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. New Phytol 201:862–873

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Guan L (2012) Linkages between woody plant proliferation dynamics and plant physiological traits in southwestern North America. J Plant Ecol 5:407–416

    Article  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2003) Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Funct Plant Biol 30:65–73

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Andrade A, Alemano S, Luna V (2016) Alterations of endogenous hormonal levels in plants under drought and salinity. Am J Plant Sci 7:1357–1371

    Article  CAS  Google Scholar 

  • Loewus FA, Dlcklnson DB (1982) Cyclitols. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology, new series: plant carbohydrates I, vol 13A. Springer, Berlin, pp 193–216

    Google Scholar 

  • Loewus FA, Loewus MW (1983) Myo-inositol: Its biosynthesis and metabolism. Annu Rev Plant Physiol 34:137–161

    Article  CAS  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509–3517

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Mauseth JD (2006) Structure-function relationships in highly modified shoots of cactaceae. Ann Bot 98(5):901–926. https://doi.org/10.1093/aob/mcl133

    Article  PubMed  PubMed Central  Google Scholar 

  • Medeiros JS, Pockmand WT (2011) Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata. Plant Cell Environ 34:43–51

    Article  CAS  PubMed  Google Scholar 

  • Michael H, Clive K (2001) Xeromorphic. In: The Cambridge illustrated glossary of botanical terms. Cambridge University Press, Cambridge

    Google Scholar 

  • Mulroy TW (1979) Spectral properties of heavily glaucous and non-glaucous leaves of a succulent rosette-plant. Oecologia 38(3):349–357. https://doi.org/10.1007/BF00345193. PMID 28309493

    Article  PubMed  Google Scholar 

  • Muvunyi BP, Yan Q, Wu F, Min X, Yan ZZ, Kanzana G, Wang Y, Zhang J (2018) Mining late embryogenesis abundant (LEA) family genes in Cleistogenes songorica, a xerophyte perennial desert plant. Int J Mol Sci 19:3430

    Article  PubMed Central  CAS  Google Scholar 

  • Nelson DE, Rammesmayer G, Bohnert HJ (1998) Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10:753–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikita (2019) Plant adaptations: introduction and ecological classification of plant. http://www.biologydiscussion.com/plants/plant-adaptations-introduction-and-ecological-classification

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose as a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocito FF, Kancilli C, Giacomini B, Sacchi GA (2007) Sulfur metabolism and cadmium stress in higher plants. Stress 1(2):142–156

    Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata defense to drought. Environ Exp Bot 66:487–492

    Article  CAS  Google Scholar 

  • Passioura J (1997) Drought and drought tolerance. In: Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, Netherlands

    Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembtyanthemum crystallinum L. J Exp Bot 40:1093–1098

    Article  CAS  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Piazza LA, Lopez D, Silva MP, Lopez Rivilli MJ, Cantero JJ, Tourn GM, Scopel AL (2014) Characterization of quaternary ammonium compounds in Flourensia xerophytic communities and response to UV-B radiation. S Afr J Bot 94:14–23

    Article  CAS  Google Scholar 

  • Proctor MCF (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–49

    Article  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Sandy V, Martin G, Frank VB (2004) Reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, van de Loo FJ, Stecher D (2003) Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216:736–744

    Article  CAS  PubMed  Google Scholar 

  • SĂ¡nchez de JimĂ©nez, Medrano L, Martinez-Barajas E (1995) Rubisco activase, a possible new member of the molecular chaperone family. Biochem 34:2826–2831

    Article  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    CAS  PubMed  Google Scholar 

  • Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer FQ, Wang HP, Kelley EE, Cueno KL, Martin SM, Buettner GR (2002) Comparing β-carotene, vitamin E and nitric oxide as membrane antioxidants. Biol Chem 383:671–681

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloid Surf B 45:131–135

    Article  CAS  Google Scholar 

  • Shi S-Q, Shi Z, Qi L-W, Sun X-M, Jiang Z-P, Li C-X, Xiao W-F, Zhang S-G (2009) Molecular responses and expression analysis of genes in a xerophytic desert shrub Haloxylon ammodendron (Chenopodiaceae) to environmental stresses. Afr J Biotech 8(12):2667–2676

    CAS  Google Scholar 

  • Shi Y, Yan X, Zhao P, Yin H, Zhao X, Xiao H, Li X, Chen G, Ma X (2013) Transcriptomic analysis of a tertiary relict plant, extreme xerophyte Reaumuria soongarica to identify genes related to drought adaptation. PLoS One 8(5):e63993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Cumbes OJ (1989) Hydroxyl-radical scavenging activity of compatible solutes. Phytochem 28:1057–1060

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, SavourĂ© A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Talia Powell (2013) Water balance in plants. http://waterbalanceinplants.blogspot.co.nz/2013_06_01_archive.html

  • Tezara W, Colombo R, Coronel I, Marıin O (2011) Water relations and photosynthetic capacity of two species of Calotropis in a tropical semi-arid ecosystem. Ann Bot 107:397–405

    Article  PubMed  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. L Exp Bot 57:201–212

    Article  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3:e01739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebee RE (2004a) The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert, China. J Arid Environ 56(3):525–539

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004b) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Warming E, Balfour IB, Groom P, Vahl M (1909) Ecology of plants. Oxford University Press, London

    Google Scholar 

  • Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Sur 29:748–751

    Article  CAS  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Xi J-J, Chen H-Y, Bai W-P, Yang R-C, Yang P-Z, Chen R-J, Hu T-M, Wang S-M (2018) Sodium-related adaptations to drought: new insights from the xerophyte plant Zygophyllum xanthoxylum. Front Plant Sci 9:1678. https://doi.org/10.3389/fpls.2018.01678

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Xu Z, Sun M, Jiang X et al (2018) Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front Plant Sci 9:1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117. https://doi.org/10.1007/s11120-013-9874-6

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dong C, Yang S, Li X, Sun X, Yang Y (2015) Physiological and proteomic adaptation of the alpine grass Stipa purpurea to a drought gradient. PLoS One 10(2):e0117475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K et al (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49(2):226–241

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Ravetta DA (2002) The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol 161:185–191

    Article  Google Scholar 

  • Zeng YJ, Wang YR, Zhang JM (2010) Is reduced seed germination due to water limitation a special survival strategy used by xerophytes in arid dunes? J Arid Environ 74(4):508–511. https://doi.org/10.1016/j.jaridenv.2009.09.013

    Article  Google Scholar 

  • Zhang L, Gao M, Hu J, Zhang X, Wang K, Ashraf M (2012) Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Inter J Mol Sci 13:3189–3202

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan Ahmed Hashem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashem, H.A., Mohamed, A.H. (2020). Strategies for Drought Tolerance in Xerophytes. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. https://doi.org/10.1007/978-981-15-2156-0_9

Download citation

Publish with us

Policies and ethics