Skip to main content

Pyrolysis Chemistry and Mechanisms: Interactions of Primary Components

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

Abstract

Global warming resulting from the use of fossil fuel has led to an urgent need to develop sustainable energy resources. Biomass pyrolysis allows conversion of biomass into valuable bio-oil, gas, and char products and at the same time through optimization of reaction conditions, allows the realization of comprehensive processing of biomass. As the component structure of natural biomass is very complicated, exploring the pyrolysis behavior of individual components is a fundamental method to understand biomass pyrolysis mechanisms. In this chapter, state-of-the-art component pyrolysis behavior and pyrolysis mechanisms are discussed in detail. Individual reaction mechanisms for cellulose, hemicellulose, and lignin, and their interactions are discussed in depth, as well as the effect of inorganic species, based on the formation mechanism of bio-oil, char and gaseous products. Research status of advanced methods of component pyrolysis is given. While there are challenges, such as detailed pyrolysis mechanisms, native component pyrolysis, interaction mechanisms, and advanced characterization methods, that are still needed. Pyrolysis technology has a bright future for creating valuable products economically from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V, McCollum DL, Rao ND, Riahi K, Rogelj J, De Sterck S, Cullen J, Frank S, Fricko O, Guo F, Gidden M, Havlík P, Huppmann D, Kiesewetter G, Rafaj P, Schoepp W, Valin H. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat Energy. 2018;3:515–27. https://doi.org/10.1038/s41560-018-0172-6.

    Article  Google Scholar 

  2. Rogelj J, Popp A, Calvin KV, Luderer G, Emmerling J, Gernaat D, Fujimori S, Strefler J, Hasegawa T, Marangoni G, Krey V, Kriegler E, Riahi K, Van Vuuren DP, Doelman J, Drouet L, Edmonds J, Fricko O, Harmsen M, Havlík P, Humpenöder F, Stehfest E, Tavoni M. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat Clim Change. 2018;8:325–32. https://doi.org/10.1038/s41558-018-0091-3.

    Article  CAS  Google Scholar 

  3. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Ipcc2014.

    Google Scholar 

  4. Dodds DR, Gross RA. Chemicals from biomass. Science. 2007;318:1250–1. https://doi.org/10.1126/science.1146356.

    Article  CAS  Google Scholar 

  5. Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Motagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbé N, Harper DP, Maravelias CT, Runge T, Dumesic JA. Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv. 2017;3(5):e1603301. https://doi.org/10.1126/sciadv.1603301.

    Article  CAS  Google Scholar 

  6. Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016;53:41–79. https://doi.org/10.1016/j.pecs.2015.10.002.

    Article  Google Scholar 

  7. Proskurina S, Junginger M, Heinimö J, Tekinel B, Vakkilainen E. Global biomass trade for energy— Part 2: production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod Biorefin. 2019;13:371–87. https://doi.org/10.1002/bbb.1858.

    Article  CAS  Google Scholar 

  8. Vaughan NE, Gough C, Mander S, Littleton EW, Welfle A, Gernaat DEHJ, Van Vuuren DP. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ Res Lett. 2018;13:044014. https://doi.org/10.1088/1748-9326/aaaa02.

    Article  CAS  Google Scholar 

  9. Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106:4044–98. https://doi.org/10.1021/cr068360d.

    Article  CAS  Google Scholar 

  10. Mettler MS, Vlachos DG, Dauenhauer PJ. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci. 2012;5:7797–809. https://doi.org/10.1039/C2EE21679E.

    Article  CAS  Google Scholar 

  11. Xia Q, Chen Z, Shao Y, Gong X, Wang H, Liu X, Parker S, Han X, Yang S, Wang Y. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat Commun. 2016;7:11162. https://doi.org/10.1038/ncomms11162. https://www.nature.com/articles/ncomms11162#supplementary-information

    Article  CAS  Google Scholar 

  12. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  13. Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energy Rev. 2014;38:594–608. https://doi.org/10.1016/j.rser.2014.06.013.

    Article  CAS  Google Scholar 

  14. Gollakota ARK, Reddy M, Subramanyam MD, Kishore N. A review on the upgradation techniques of pyrolysis oil. Renew Sust Energy Rev. 2016;58:1543–68. https://doi.org/10.1016/j.rser.2015.12.180.

    Article  CAS  Google Scholar 

  15. Shen D, Jin W, Hu J, Xiao R, Luo K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sust Energy Rev. 2015;51:761–74. https://doi.org/10.1016/j.rser.2015.06.054.

    Article  CAS  Google Scholar 

  16. Yang H, Liu B, Chen Y, Chen W, Yang Q, Chen H. Application of biomass pyrolytic polygeneration technology using retort reactors. Bioresour Technol. 2016;200:64–71. https://doi.org/10.1016/j.biortech.2015.09.107.

    Article  CAS  Google Scholar 

  17. Chen Y, Yang H, Wang X, Chen W, Chen H. Biomass pyrolytic polygeneration system: adaptability for different feedstocks. Energ Fuel. 2016;30:414–22. https://doi.org/10.1021/acs.energyfuels.5b02332.

    Article  CAS  Google Scholar 

  18. Chen Y, Yang H, Wang X, Zhang S, Chen H. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour Technol. 2012;107:411–8. https://doi.org/10.1016/j.biortech.2011.10.074.

    Article  CAS  Google Scholar 

  19. Zhang X, Che Q, Cui X, Wei Z, Zhang X, Chen Y, Wang X, Chen H. Application of biomass pyrolytic polygeneration by a moving bed: characteristics of products and energy efficiency analysis. Bioresour Technol. 2018;254:130–8. https://doi.org/10.1016/j.biortech.2018.01.083.

    Article  CAS  Google Scholar 

  20. Xu C, Arancon RAD, Labidi J, Luque R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev. 2014;43:7485–500. https://doi.org/10.1039/C4CS00235K.

    Article  CAS  Google Scholar 

  21. Upton BM, Kasko AM. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev. 2016;116:2275–306. https://doi.org/10.1021/acs.chemrev.5b00345.

    Article  CAS  Google Scholar 

  22. Liu Y, Nie Y, Lu X, Zhang X, He H, Pan F, Zhou L, Liu X, Ji X, Zhang S. Cascade utilization of lignocellulosic biomass to high-value products. Green Chem. 2019;21:3499–535. https://doi.org/10.1039/C9GC00473D.

    Article  CAS  Google Scholar 

  23. Liu WJ, Jiang H, Yu HQ. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev. 2015;115:12251–85. https://doi.org/10.1021/acs.chemrev.5b00195.

    Article  CAS  Google Scholar 

  24. Hu W, Dang Q, Rover M, Brown RC, Wright MM. Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels. 2016;7:57–67. https://doi.org/10.1080/17597269.2015.1118780.

    Article  CAS  Google Scholar 

  25. Chen W, Fang Y, Li K, Chen Z, Xia M, Gong M, Chen Y, Yang H, Tu X, Chen H. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Appl Energy. 2020;260:114242. https://doi.org/10.1016/j.apenergy.2019.114242.

    Article  CAS  Google Scholar 

  26. Sharma A, Pareek V, Zhang D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew Sust Energy Rev. 2015;50:1081–96. https://doi.org/10.1016/j.rser.2015.04.193.

    Article  CAS  Google Scholar 

  27. Zhou X, Li W, Mabon R, Broadbelt LJ. A critical review on hemicellulose pyrolysis. Energ Technol. 2017;5:52–79. https://doi.org/10.1002/ente.201600327.

    Article  CAS  Google Scholar 

  28. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energy Rev. 2016;57:1126–40. https://doi.org/10.1016/j.rser.2015.12.185.

    Article  CAS  Google Scholar 

  29. French ADJC. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. 2017;24:4605–9. https://doi.org/10.1007/s10570-017-1450-3.

  30. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  31. Chen X, Che Q, Li S, Liu Z, Yang H, Chen Y, Wang X, Shao J, Chen H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Process Technol. 2019;196:106180. https://doi.org/10.1016/j.fuproc.2019.106180.

    Article  CAS  Google Scholar 

  32. Adenson MO, Kelley MD, Elkelany OO, Biernacki JJ, Liu YW. Kinetics of cellulose pyrolysis: ensuring optimal outcomes. Can J Chem Eng. 2018;96:926–35. https://doi.org/10.1002/cjce.23060.

    Article  CAS  Google Scholar 

  33. Xin S, Yang H, Chen Y, Wang X, Chen H. Assessment of pyrolysis polygeneration of biomass based on major components: product characterization and elucidation of degradation pathways. Fuel. 2013;113:266–73. https://doi.org/10.1016/j.fuel.2013.05.061.

    Article  CAS  Google Scholar 

  34. Zhang X, Yang W, Dong C. Levoglucosan formation mechanisms during cellulose pyrolysis. J Anal Appl Pyrolysis. 2013;104:19–27. https://doi.org/10.1016/j.jaap.2013.09.015.

    Article  CAS  Google Scholar 

  35. Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:20097–107. https://doi.org/10.1021/jp906702p.

    Article  CAS  Google Scholar 

  36. Xin S, Yang H, Chen Y, Yang M, Chen L, Wang X, Chen H. Chemical structure evolution of char during the pyrolysis of cellulose. J Anal Appl Pyrolysis. 2015;116:263–71. https://doi.org/10.1016/j.jaap.2015.09.002.

    Article  CAS  Google Scholar 

  37. Yang H, Gong M, Hu J, Liu B, Chen Y, Xiao J, Li S, Dong Z, Chen H. Cellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Energ Fuel. 2020;34:3412–21. https://doi.org/10.1021/acs.energyfuels.0c00134.

  38. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis. 2014;105:143–50. https://doi.org/10.1016/j.jaap.2013.10.013.

    Article  CAS  Google Scholar 

  39. Burnham AK, Zhou X, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energ Fuel. 2015;29:2906–18. https://doi.org/10.1021/acs.energyfuels.5b00350.

    Article  CAS  Google Scholar 

  40. Zeitoun R, Pontalier PY, Marechal P, Rigal L. Twin-screw extrusion for hemicellulose recovery: influence on extract purity and purification performance. Bioresour Technol. 2010;101:9348–54. https://doi.org/10.1016/j.biortech.2010.07.022.

    Article  CAS  Google Scholar 

  41. Werner K, Pommer L, Broström M. Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis. 2014;110:130–7. https://doi.org/10.1016/j.jaap.2014.08.013.

    Article  CAS  Google Scholar 

  42. Patwardhan PR, Brown RC, Shanks BH. Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem. 2011;4:636–43. https://doi.org/10.1002/cssc.201000425.

    Article  CAS  Google Scholar 

  43. Yeo JY, Chin BLF, Tan JK, Loh YS. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J Energy Inst. 2019;92:27–37. https://doi.org/10.1016/j.joei.2017.12.003.

    Article  CAS  Google Scholar 

  44. Jiang G, Nowakowski DJ, Bridgwater AV. Effect of the temperature on the composition of lignin pyrolysis products. Energ Fuel. 2010;24:4470–5. https://doi.org/10.1021/ef100363c.

    Article  CAS  Google Scholar 

  45. Carrier M, Windt M, Ziegler B, Appelt J, Saake B, Meier D, Bridgwater A. Quantitative insights into the fast pyrolysis of extracted cellulose, hemicelluloses, and lignin. ChemSusChem. 2017;10:3212–24. https://doi.org/10.1002/cssc.201700984.

    Article  CAS  Google Scholar 

  46. Zhou X, Li W, Mabon R, Broadbelt LJ. A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ Sci. 2018;11:1240–60. https://doi.org/10.1039/c7ee03208k.

    Article  CAS  Google Scholar 

  47. Yang H, Li S, Liu B, Chen Y, Xiao J, Dong Z, Gong M, Chen H. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Fuel 2020;267. https://doi.org/10.1016/j.fuel.2020.117302.

  48. Shen DK, Gu S, Bridgwater AV. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J Anal Appl Pyrolysis. 2010;87:199–206. https://doi.org/10.1016/j.jaap.2009.12.001.

    Article  CAS  Google Scholar 

  49. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47:852–908. https://doi.org/10.1039/C7CS00566K.

    Article  CAS  Google Scholar 

  50. Zhang J, Jiang X, Ye X, Chen L, Lu Q, Wang X, Dong C. Pyrolysis mechanism of a β-O-4 type lignin dimer model compound. J Therm Anal Calorim. 2016;123:501–10. https://doi.org/10.1007/s10973-015-4944-y.

    Article  CAS  Google Scholar 

  51. Jiang W, Wu S, Lucia LA, Chu J. A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds. J Anal Appl Pyrolysis. 2017;125:185–92. https://doi.org/10.1016/j.jaap.2017.04.003.

    Article  CAS  Google Scholar 

  52. Chu S, Subrahmanyam AV, Huber GW. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chem. 2013;15:125–36. https://doi.org/10.1039/c2gc36332a.

    Article  CAS  Google Scholar 

  53. Shen D, Liu G, Zhao J, Xue J, Guan S, Xiao R. Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. J Anal Appl Pyrolysis. 2015;112:56–65. https://doi.org/10.1016/j.jaap.2015.02.022.

    Article  CAS  Google Scholar 

  54. Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J Anal Appl Pyrolysis. 2011;92:88–98. https://doi.org/10.1016/j.jaap.2011.04.011.

    Article  CAS  Google Scholar 

  55. Wang S, Ru B, Lin H, Sun W, Luo Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol. 2015;182:120–7. https://doi.org/10.1016/j.biortech.2015.01.127.

    Article  CAS  Google Scholar 

  56. Liu C, Ye L, Yuan W, Zhang Y, Zou J, Yang J, Wang Y, Qi F, Zhou Z. Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure. Fuel. 2018;232:632–8. https://doi.org/10.1016/j.fuel.2018.05.162.

    Article  CAS  Google Scholar 

  57. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy. 2010;34:290–301. https://doi.org/10.1016/j.biombioe.2009.10.018.

    Article  CAS  Google Scholar 

  58. Chen Y, Liu B, Yang H, Wang X, Zhang X, Chen H. Generalized two-dimensional correlation infrared spectroscopy to reveal the mechanisms of lignocellulosic biomass pyrolysis. Proc. Combust. Inst. 2019;37:3013–21. https://doi.org/10.1016/j.proci.2018.06.141.

  59. Kawamoto H. Lignin pyrolysis reactions. J Wood Sci. 2017;63:117–32. https://doi.org/10.1007/s10086-016-1606-z.

    Article  CAS  Google Scholar 

  60. Robichaud DJ, Nimlos MR, Ellison GB. Pyrolysis mechanisms of lignin model compounds using a heated micro-reactor. In: Schlaf M, Zhang ZC, editors. Reaction pathways and mechanisms in thermocatalytic biomass conversion II: homogeneously catalyzed transformations, acrylics from biomass, theoretical aspects, lignin valorization and pyrolysis pathways. Singapore: Springer; 2016. p. 145–71.

    Chapter  Google Scholar 

  61. Dieguez-Alonso A, Anca-Couce A, Zobel N, Behrendt F. Understanding the primary and secondary slow pyrolysis mechanisms of holocellulose, lignin and wood with laser-induced fluorescence. Fuel. 2015;153:102–9. https://doi.org/10.1016/j.fuel.2015.02.097.

    Article  CAS  Google Scholar 

  62. Zhou S, Pecha B, van Kuppevelt M, McDonald AG, Garcia-Perez M. Slow and fast pyrolysis of Douglas-fir lignin: importance of liquid-intermediate formation on the distribution of products. Biomass Bioenergy. 2014;66:398–409. https://doi.org/10.1016/j.biombioe.2014.03.064.

    Article  CAS  Google Scholar 

  63. Kotake T, Kawamoto H, Saka S. Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin. J Anal Appl Pyrolysis. 2014;105:309–16. https://doi.org/10.1016/j.jaap.2013.11.018.

    Article  CAS  Google Scholar 

  64. Bayerbach R, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: structure elucidation of oligomeric molecules. J Anal Appl Pyrolysis. 2009;85:98–107. https://doi.org/10.1016/j.jaap.2008.10.021.

    Article  CAS  Google Scholar 

  65. Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): part II. GPC, carbonyl goups, and 13C-NMR. J. Anal. Appl. Pyrolysis. 2001;58-59:387–400. https://doi.org/10.1016/S0165-2370(00)00173-X.

    Article  CAS  Google Scholar 

  66. Zhang J, Choi YS, Yoo CG, Kim TH, Brown RC, Shanks BH. Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis. ACS Sustain Chem Eng. 2015;3:293–301. https://doi.org/10.1021/sc500664h.

    Article  CAS  Google Scholar 

  67. Zhang N, Li S, Xiong L, Hong Y, Chen Y. Cellulose-hemicellulose interaction in wood secondary cell-wall. Model Simul Mater Sci Eng. 2015;23:085010. https://doi.org/10.1088/0965-0393/23/8/085010.

    Article  CAS  Google Scholar 

  68. Terrett OM, Dupree P. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotech. 2019;56:97–104. https://doi.org/10.1016/j.copbio.2018.10.010.

    Article  CAS  Google Scholar 

  69. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energ Fuel. 2006;20:388–93. https://doi.org/10.1021/ef0580117.

    Article  CAS  Google Scholar 

  70. Yu J, Paterson N, Blamey J, Millan M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel. 2017;191:140–9. https://doi.org/10.1016/j.fuel.2016.11.057.

    Article  CAS  Google Scholar 

  71. Hosoya T, Kawamoto H, Saka S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis. 2007;80:118–25. https://doi.org/10.1016/j.jaap.2007.01.006.

    Article  CAS  Google Scholar 

  72. Fan Y, Cai Y, Li X, Jiao L, Xia J, Deng X. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method. Energy Convers Manag. 2017;138:106–18. https://doi.org/10.1016/j.enconman.2017.01.075.

    Article  CAS  Google Scholar 

  73. Chen Y, Fang Y, Yang H, Xin S, Zhang X, Wang X, Chen H. Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. Fuel. 2019;248:1–7. https://doi.org/10.1016/j.fuel.2019.03.070.

    Article  CAS  Google Scholar 

  74. Wu S, Shen D, Hu J, Zhang H, Xiao R. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy. 2016;95:55–63. https://doi.org/10.1016/j.biombioe.2016.09.015.

    Article  CAS  Google Scholar 

  75. Kawamoto H, Watanabe T, Saka S. Strong interactions during lignin pyrolysis in wood – a study by in situ probing of the radical chain reactions using model dimers. J Anal Appl Pyrolysis. 2015;113:630–7. https://doi.org/10.1016/j.jaap.2015.04.009.

    Article  CAS  Google Scholar 

  76. Wang J, Shen B, Kang D, Yuan P, Wu C. Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA. Chem Eng Sci. 2019;195:767–76. https://doi.org/10.1016/j.ces.2018.10.023.

    Article  CAS  Google Scholar 

  77. Zhou H, Wu C, Meng A, Zhang Y, Williams PT. Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. J Anal Appl Pyrolysis. 2014;110:264–9. https://doi.org/10.1016/j.jaap.2014.09.007.

    Article  CAS  Google Scholar 

  78. Giudicianni P, Cardone G, Ragucci R. Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures. J Anal Appl Pyrolysis. 2013;100:213–22. https://doi.org/10.1016/j.jaap.2012.12.026.

    Article  CAS  Google Scholar 

  79. Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J Anal Appl Pyrolysis. 2007;78:265–71. https://doi.org/10.1016/j.jaap.2006.08.002.

    Article  CAS  Google Scholar 

  80. Volpe R, Zabaniotou AA, Skoulou V. Synergistic effects between lignin and cellulose during pyrolysis of agricultural waste. Energ Fuel. 2018;32:8420–30. https://doi.org/10.1021/acs.energyfuels.8b00767.

    Article  CAS  Google Scholar 

  81. Wu S, Shen D, Hu J, Zhang H, Xiao R. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy. 2016;90:209–17. https://doi.org/10.1016/j.biombioe.2016.04.012.

    Article  CAS  Google Scholar 

  82. Hilbers TJ, Wang Z, Pecha B, Westerhof RJM, Kersten SRA, Pelaez-Samaniego MR, Garcia-Perez M. Cellulose-Lignin interactions during slow and fast pyrolysis. J Anal Appl Pyrolysis. 2015;114:197–207. https://doi.org/10.1016/j.jaap.2015.05.020.

    Article  CAS  Google Scholar 

  83. Ye X, Lu Q, Jiang X, Wang X, Hu B, Li W, Dong C. Interaction characteristics and mechanism in the fast co-pyrolysis of cellulose and lignin model compounds. J Therm Anal Calorim. 2017;130:975–84. https://doi.org/10.1007/s10973-017-6465-3.

    Article  CAS  Google Scholar 

  84. Hosoya T, Kawamoto H, Saka S. Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products. J Anal Appl Pyrolysis. 2009;85:237–46. https://doi.org/10.1016/j.jaap.2008.11.028.

    Article  CAS  Google Scholar 

  85. Long Y, Zhou H, Meng A, Li Q, Zhang Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean J Chem Eng. 2016;33:2638–43. https://doi.org/10.1007/s11814-016-0102-x.

    Article  CAS  Google Scholar 

  86. Youssefian S, Rahbar N. Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep-UK. 2015;5:11116. https://doi.org/10.1038/srep11116.

    Article  Google Scholar 

  87. Zhao S, Liu M, Zhao L, Zhu L. Influence of interactions among three Biomass components on the pyrolysis behavior. Ind Eng Chem Res. 2018;57:5241–9. https://doi.org/10.1021/acs.iecr.8b00593.

    Article  CAS  Google Scholar 

  88. Liu Z, Wang L, Zhang Y, Li Y, Li Z, Cai H. Cellulose-lignin and xylan-lignin interactions on the formation of lignin-derived phenols in pyrolysis oil. Bioresources. 2017;12:4958–71. https://doi.org/10.15376/biores.12.3.4958-4971.

    Article  CAS  Google Scholar 

  89. Wang S, Guo X, Wang K, Luo Z. Influence of the interaction of components on the pyrolysis behavior of biomass. J. Anal. Appl. Pyrolysis. 2011;91:183–9. https://doi.org/10.1016/j.jaap.2011.02.006.

    Article  CAS  Google Scholar 

  90. Liu Q, Zhong Z, Wang S, Luo Z. Interactions of biomass components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrolysis. 2011;90:213–8. https://doi.org/10.1016/j.jaap.2010.12.009.

    Article  CAS  Google Scholar 

  91. Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11:266–77. https://doi.org/10.1016/j.pbi.2008.03.006.

    Article  CAS  Google Scholar 

  92. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel. 2013;105:40–76. https://doi.org/10.1016/j.fuel.2012.09.041.

    Article  CAS  Google Scholar 

  93. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012;94:1–33. https://doi.org/10.1016/j.fuel.2011.09.030.

    Article  CAS  Google Scholar 

  94. Leijenhorst EJ, Wolters W, Van De Beld L, Prins W. Inorganic element transfer from biomass to fast pyrolysis oil: review and experiments. Fuel Process Technol. 2016;149:96–111. https://doi.org/10.1016/j.fuproc.2016.03.026.

    Article  CAS  Google Scholar 

  95. Liu WJ, Li WW, Jiang H, Yu HQ. Fates of chemical elements in biomass during its pyrolysis. Chem Rev. 2017;117:6367–98. https://doi.org/10.1021/acs.chemrev.6b00647.

    Article  CAS  Google Scholar 

  96. Wiinikka H, Johansson AC, Sandstrom L, Ohrman OGW. Fate of inorganic elements during fast pyrolysis of biomass in a cyclone reactor. Fuel. 2017;203:537–47. https://doi.org/10.1016/j.fuel.2017.04.129.

    Article  CAS  Google Scholar 

  97. Lane DJ, van Eyk PJ, Ashman PJ, Kwong CW, de Nys R, Roberts DA, Cole AJ, Lewis DM. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass. Energ Fuel. 2015;29:2542–54. https://doi.org/10.1021/acs.energyfuels.5b00279.

    Article  CAS  Google Scholar 

  98. Fahmi R, Bridgwater AV, Darvell LI, Jones JM, Yates N, Thain S, Donnison IS. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel. 2007;86:1560–9. https://doi.org/10.1016/j.fuel.2006.11.030.

    Article  CAS  Google Scholar 

  99. Yann LB, Thierry G, Sébastien L, Mohammed B, Luc D, Nicolas B, Colin S, Patrick C, Dufour A. Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques. ChemSusChem. 2016;9:863–72. https://doi.org/10.1002/cssc.201501560.

    Article  CAS  Google Scholar 

  100. Nowakowski DJ, Jones JM. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. J Anal Appl Pyrolysis. 2008;83:12–25. https://doi.org/10.1016/j.jaap.2008.05.007.

    Article  CAS  Google Scholar 

  101. Di Blasi C, Galgano A, Branca C. Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Ind Eng Chem Res. 2009;48:3359–69. https://doi.org/10.1021/ie801468y.

    Article  CAS  Google Scholar 

  102. Patwardhan PR, Satrio JA, Brown RC, Shanks BH. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol. 2010;101:4646–55. https://doi.org/10.1016/j.biortech.2010.01.112.

    Article  CAS  Google Scholar 

  103. Fang Y, Li J, Chen Y, Lu Q, Yang H, Wang X, Chen H. Experiment and modeling study of glucose pyrolysis: formation of 3-hydroxy-γ-butyrolactone and 3-(2H)-furanone. Energ Fuel. 2018;32(9):9519–29. https://doi.org/10.1021/acs.energyfuels.8b01877.

    Article  CAS  Google Scholar 

  104. Zhou Z, Chen X, Wang Y, Liu C, Ma H, Zhou C, Qi F, Yang J. Online photoionization mass spectrometric evaluation of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. Bioresour Technol. 2019;275:130–7. https://doi.org/10.1016/j.biortech.2018.12.045.

    Article  CAS  Google Scholar 

  105. Wang Y, Huang Q, Zhou Z, Yang J, Qi F, Pan Y. Online study on the pyrolysis of polypropylene over the HZSM-5 zeolite with photoionization time-of-flight mass spectrometry. Energ Fuel. 2015;29:1090–8. https://doi.org/10.1021/ef502529w.

    Article  CAS  Google Scholar 

  106. Jia L, Le-Brech Y, Shrestha B, Frowein MB, Ehlert S, Mauviel G, Zimmermann R, Dufour A. Fast pyrolysis in a microfluidized bed reactor: effect of biomass properties and operating conditions on volatiles composition as analyzed by online single photoionization mass spectrometry. Energ Fuel. 2015;29:7364–74. https://doi.org/10.1021/acs.energyfuels.5b01803.

    Article  CAS  Google Scholar 

  107. Jia LY, Raad M, Hamieh S, Toufaily J, Hamieh T, Bettahar MM, Mauviel G, Tarrighi M, Pinard L, Dufour A. Catalytic fast pyrolysis of biomass: superior selectivity of hierarchical zeolites to aromatics. Green Chem. 2017;19:5442–59. https://doi.org/10.1039/C7GC02309J.

    Article  CAS  Google Scholar 

  108. Shao S, Zhang H, Xiao R, Li X, Cai Y. Evolution of coke in the catalytic conversion of biomass-derivates by combined in-situ DRIFTS and ex-situ approach: effect of functional structure. Fuel Process Technol. 2018;178:88–97. https://doi.org/10.1016/j.fuproc.2018.05.021.

    Article  CAS  Google Scholar 

  109. Vazquez Thyssen V, Moreira Assaf E. Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol. Fuel. 2019;254:115592. https://doi.org/10.1016/j.fuel.2019.05.175.

    Article  CAS  Google Scholar 

  110. Liu C, Wang H, Karim AM, Sun J, Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43:7594–623. https://doi.org/10.1039/C3CS60414D.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express great appreciation of the financial support from the National Natural Science Foundation of China (51876078, 51622604 and 51861130362), China Postdoctoral Science Foundation (2018M640696 and 2019T120664), the technical support from Analytical and Testing Center in Huazhong University of Science and Technology (http://atc.hust.edu.cn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., Chen, Y., Chen, H., Yang, H. (2020). Pyrolysis Chemistry and Mechanisms: Interactions of Primary Components. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_4

Download citation

Publish with us

Policies and ethics